Metamath Proof Explorer


Theorem islpcn

Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses islpcn.s φ S
islpcn.p φ P
Assertion islpcn φ P limPt TopOpen fld S e + x S P x P < e

Proof

Step Hyp Ref Expression
1 islpcn.s φ S
2 islpcn.p φ P
3 eqid TopOpen fld = TopOpen fld
4 3 cnfldtop TopOpen fld Top
5 4 a1i φ TopOpen fld Top
6 unicntop = TopOpen fld
7 6 islp2 TopOpen fld Top S P P limPt TopOpen fld S n nei TopOpen fld P n S P
8 5 1 2 7 syl3anc φ P limPt TopOpen fld S n nei TopOpen fld P n S P
9 cnxmet abs ∞Met
10 9 a1i φ e + abs ∞Met
11 2 adantr φ e + P
12 simpr φ e + e +
13 3 cnfldtopn TopOpen fld = MetOpen abs
14 13 blnei abs ∞Met P e + P ball abs e nei TopOpen fld P
15 10 11 12 14 syl3anc φ e + P ball abs e nei TopOpen fld P
16 15 adantlr φ n nei TopOpen fld P n S P e + P ball abs e nei TopOpen fld P
17 simplr φ n nei TopOpen fld P n S P e + n nei TopOpen fld P n S P
18 ineq1 n = P ball abs e n S P = P ball abs e S P
19 18 neeq1d n = P ball abs e n S P P ball abs e S P
20 19 rspcva P ball abs e nei TopOpen fld P n nei TopOpen fld P n S P P ball abs e S P
21 16 17 20 syl2anc φ n nei TopOpen fld P n S P e + P ball abs e S P
22 n0 P ball abs e S P x x P ball abs e S P
23 21 22 sylib φ n nei TopOpen fld P n S P e + x x P ball abs e S P
24 elinel2 x P ball abs e S P x S P
25 24 adantl φ e + x P ball abs e S P x S P
26 1 adantr φ x P ball abs e S P S
27 24 eldifad x P ball abs e S P x S
28 27 adantl φ x P ball abs e S P x S
29 26 28 sseldd φ x P ball abs e S P x
30 2 adantr φ x P ball abs e S P P
31 29 30 abssubd φ x P ball abs e S P x P = P x
32 eqid abs = abs
33 32 cnmetdval P x P abs x = P x
34 30 29 33 syl2anc φ x P ball abs e S P P abs x = P x
35 31 34 eqtr4d φ x P ball abs e S P x P = P abs x
36 35 adantlr φ e + x P ball abs e S P x P = P abs x
37 elinel1 x P ball abs e S P x P ball abs e
38 37 adantl φ e + x P ball abs e S P x P ball abs e
39 9 a1i φ e + x P ball abs e S P abs ∞Met
40 11 adantr φ e + x P ball abs e S P P
41 rpxr e + e *
42 41 ad2antlr φ e + x P ball abs e S P e *
43 elbl abs ∞Met P e * x P ball abs e x P abs x < e
44 39 40 42 43 syl3anc φ e + x P ball abs e S P x P ball abs e x P abs x < e
45 38 44 mpbid φ e + x P ball abs e S P x P abs x < e
46 45 simprd φ e + x P ball abs e S P P abs x < e
47 36 46 eqbrtrd φ e + x P ball abs e S P x P < e
48 25 47 jca φ e + x P ball abs e S P x S P x P < e
49 48 ex φ e + x P ball abs e S P x S P x P < e
50 49 adantlr φ n nei TopOpen fld P n S P e + x P ball abs e S P x S P x P < e
51 50 eximdv φ n nei TopOpen fld P n S P e + x x P ball abs e S P x x S P x P < e
52 23 51 mpd φ n nei TopOpen fld P n S P e + x x S P x P < e
53 df-rex x S P x P < e x x S P x P < e
54 52 53 sylibr φ n nei TopOpen fld P n S P e + x S P x P < e
55 54 ralrimiva φ n nei TopOpen fld P n S P e + x S P x P < e
56 9 a1i φ abs ∞Met
57 13 neibl abs ∞Met P n nei TopOpen fld P n e + P ball abs e n
58 56 2 57 syl2anc φ n nei TopOpen fld P n e + P ball abs e n
59 58 simplbda φ n nei TopOpen fld P e + P ball abs e n
60 59 adantlr φ e + x S P x P < e n nei TopOpen fld P e + P ball abs e n
61 nfv e φ
62 nfra1 e e + x S P x P < e
63 61 62 nfan e φ e + x S P x P < e
64 nfv e n nei TopOpen fld P
65 63 64 nfan e φ e + x S P x P < e n nei TopOpen fld P
66 nfv e n S P
67 simp1l φ e + x S P x P < e e + P ball abs e n φ
68 simp2 φ e + x S P x P < e e + P ball abs e n e +
69 67 68 jca φ e + x S P x P < e e + P ball abs e n φ e +
70 rspa e + x S P x P < e e + x S P x P < e
71 70 adantll φ e + x S P x P < e e + x S P x P < e
72 71 3adant3 φ e + x S P x P < e e + P ball abs e n x S P x P < e
73 simp3 φ e + x S P x P < e e + P ball abs e n P ball abs e n
74 53 biimpi x S P x P < e x x S P x P < e
75 74 ad2antlr φ e + x S P x P < e P ball abs e n x x S P x P < e
76 nfv x φ e +
77 nfre1 x x S P x P < e
78 76 77 nfan x φ e + x S P x P < e
79 nfv x P ball abs e n
80 78 79 nfan x φ e + x S P x P < e P ball abs e n
81 simplr φ e + P ball abs e n x S P x P < e P ball abs e n
82 1 adantr φ x S P S
83 eldifi x S P x S
84 83 adantl φ x S P x S
85 82 84 sseldd φ x S P x
86 85 adantrr φ x S P x P < e x
87 2 adantr φ x S P P
88 87 85 33 syl2anc φ x S P P abs x = P x
89 87 85 abssubd φ x S P P x = x P
90 88 89 eqtrd φ x S P P abs x = x P
91 90 adantrr φ x S P x P < e P abs x = x P
92 simprr φ x S P x P < e x P < e
93 91 92 eqbrtrd φ x S P x P < e P abs x < e
94 86 93 jca φ x S P x P < e x P abs x < e
95 94 adantlr φ e + x S P x P < e x P abs x < e
96 9 a1i φ e + x S P x P < e abs ∞Met
97 11 adantr φ e + x S P x P < e P
98 41 ad2antlr φ e + x S P x P < e e *
99 96 97 98 43 syl3anc φ e + x S P x P < e x P ball abs e x P abs x < e
100 95 99 mpbird φ e + x S P x P < e x P ball abs e
101 100 adantlr φ e + P ball abs e n x S P x P < e x P ball abs e
102 81 101 sseldd φ e + P ball abs e n x S P x P < e x n
103 simprl φ e + P ball abs e n x S P x P < e x S P
104 102 103 elind φ e + P ball abs e n x S P x P < e x n S P
105 104 ex φ e + P ball abs e n x S P x P < e x n S P
106 105 adantlr φ e + x S P x P < e P ball abs e n x S P x P < e x n S P
107 80 106 eximd φ e + x S P x P < e P ball abs e n x x S P x P < e x x n S P
108 75 107 mpd φ e + x S P x P < e P ball abs e n x x n S P
109 n0 n S P x x n S P
110 108 109 sylibr φ e + x S P x P < e P ball abs e n n S P
111 69 72 73 110 syl21anc φ e + x S P x P < e e + P ball abs e n n S P
112 111 3exp φ e + x S P x P < e e + P ball abs e n n S P
113 112 adantr φ e + x S P x P < e n nei TopOpen fld P e + P ball abs e n n S P
114 65 66 113 rexlimd φ e + x S P x P < e n nei TopOpen fld P e + P ball abs e n n S P
115 60 114 mpd φ e + x S P x P < e n nei TopOpen fld P n S P
116 115 ralrimiva φ e + x S P x P < e n nei TopOpen fld P n S P
117 55 116 impbida φ n nei TopOpen fld P n S P e + x S P x P < e
118 8 117 bitrd φ P limPt TopOpen fld S e + x S P x P < e