Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Principal ideal rings. Divisibility in the integers
islpidl
Next ⟩
lpi0
Metamath Proof Explorer
Ascii
Unicode
Theorem
islpidl
Description:
Property of being a principal ideal.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Hypotheses
lpival.p
⊢
P
=
LPIdeal
⁡
R
lpival.k
⊢
K
=
RSpan
⁡
R
lpival.b
⊢
B
=
Base
R
Assertion
islpidl
⊢
R
∈
Ring
→
I
∈
P
↔
∃
g
∈
B
I
=
K
⁡
g
Proof
Step
Hyp
Ref
Expression
1
lpival.p
⊢
P
=
LPIdeal
⁡
R
2
lpival.k
⊢
K
=
RSpan
⁡
R
3
lpival.b
⊢
B
=
Base
R
4
1
2
3
lpival
⊢
R
∈
Ring
→
P
=
⋃
g
∈
B
K
⁡
g
5
4
eleq2d
⊢
R
∈
Ring
→
I
∈
P
↔
I
∈
⋃
g
∈
B
K
⁡
g
6
eliun
⊢
I
∈
⋃
g
∈
B
K
⁡
g
↔
∃
g
∈
B
I
∈
K
⁡
g
7
fvex
⊢
K
⁡
g
∈
V
8
7
elsn2
⊢
I
∈
K
⁡
g
↔
I
=
K
⁡
g
9
8
rexbii
⊢
∃
g
∈
B
I
∈
K
⁡
g
↔
∃
g
∈
B
I
=
K
⁡
g
10
6
9
bitri
⊢
I
∈
⋃
g
∈
B
K
⁡
g
↔
∃
g
∈
B
I
=
K
⁡
g
11
5
10
bitrdi
⊢
R
∈
Ring
→
I
∈
P
↔
∃
g
∈
B
I
=
K
⁡
g