Metamath Proof Explorer


Theorem islpln2

Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012)

Ref Expression
Hypotheses islpln5.b B = Base K
islpln5.l ˙ = K
islpln5.j ˙ = join K
islpln5.a A = Atoms K
islpln5.p P = LPlanes K
Assertion islpln2 K HL X P X B p A q A r A p q ¬ r ˙ p ˙ q X = p ˙ q ˙ r

Proof

Step Hyp Ref Expression
1 islpln5.b B = Base K
2 islpln5.l ˙ = K
3 islpln5.j ˙ = join K
4 islpln5.a A = Atoms K
5 islpln5.p P = LPlanes K
6 1 5 lplnbase X P X B
7 6 pm4.71ri X P X B X P
8 1 2 3 4 5 islpln5 K HL X B X P p A q A r A p q ¬ r ˙ p ˙ q X = p ˙ q ˙ r
9 8 pm5.32da K HL X B X P X B p A q A r A p q ¬ r ˙ p ˙ q X = p ˙ q ˙ r
10 7 9 syl5bb K HL X P X B p A q A r A p q ¬ r ˙ p ˙ q X = p ˙ q ˙ r