Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
islpln2
Next ⟩
lplni2
Metamath Proof Explorer
Ascii
Unicode
Theorem
islpln2
Description:
The predicate "is a lattice plane" in terms of atoms.
(Contributed by
NM
, 25-Jun-2012)
Ref
Expression
Hypotheses
islpln5.b
⊢
B
=
Base
K
islpln5.l
⊢
≤
˙
=
≤
K
islpln5.j
⊢
∨
˙
=
join
⁡
K
islpln5.a
⊢
A
=
Atoms
⁡
K
islpln5.p
⊢
P
=
LPlanes
⁡
K
Assertion
islpln2
⊢
K
∈
HL
→
X
∈
P
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
∃
r
∈
A
p
≠
q
∧
¬
r
≤
˙
p
∨
˙
q
∧
X
=
p
∨
˙
q
∨
˙
r
Proof
Step
Hyp
Ref
Expression
1
islpln5.b
⊢
B
=
Base
K
2
islpln5.l
⊢
≤
˙
=
≤
K
3
islpln5.j
⊢
∨
˙
=
join
⁡
K
4
islpln5.a
⊢
A
=
Atoms
⁡
K
5
islpln5.p
⊢
P
=
LPlanes
⁡
K
6
1
5
lplnbase
⊢
X
∈
P
→
X
∈
B
7
6
pm4.71ri
⊢
X
∈
P
↔
X
∈
B
∧
X
∈
P
8
1
2
3
4
5
islpln5
⊢
K
∈
HL
∧
X
∈
B
→
X
∈
P
↔
∃
p
∈
A
∃
q
∈
A
∃
r
∈
A
p
≠
q
∧
¬
r
≤
˙
p
∨
˙
q
∧
X
=
p
∨
˙
q
∨
˙
r
9
8
pm5.32da
⊢
K
∈
HL
→
X
∈
B
∧
X
∈
P
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
∃
r
∈
A
p
≠
q
∧
¬
r
≤
˙
p
∨
˙
q
∧
X
=
p
∨
˙
q
∨
˙
r
10
7
9
syl5bb
⊢
K
∈
HL
→
X
∈
P
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
∃
r
∈
A
p
≠
q
∧
¬
r
≤
˙
p
∨
˙
q
∧
X
=
p
∨
˙
q
∨
˙
r