Metamath Proof Explorer


Theorem islpln2a

Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙ = K
islpln2a.j ˙ = join K
islpln2a.a A = Atoms K
islpln2a.p P = LPlanes K
Assertion islpln2a K HL Q A R A S A Q ˙ R ˙ S P Q R ¬ S ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙ = K
2 islpln2a.j ˙ = join K
3 islpln2a.a A = Atoms K
4 islpln2a.p P = LPlanes K
5 oveq1 Q = R Q ˙ R = R ˙ R
6 2 3 hlatjidm K HL R A R ˙ R = R
7 6 3ad2antr2 K HL Q A R A S A R ˙ R = R
8 5 7 sylan9eqr K HL Q A R A S A Q = R Q ˙ R = R
9 8 oveq1d K HL Q A R A S A Q = R Q ˙ R ˙ S = R ˙ S
10 simpll K HL Q A R A S A Q = R K HL
11 simplr2 K HL Q A R A S A Q = R R A
12 simplr3 K HL Q A R A S A Q = R S A
13 2 3 4 2atnelpln K HL R A S A ¬ R ˙ S P
14 10 11 12 13 syl3anc K HL Q A R A S A Q = R ¬ R ˙ S P
15 9 14 eqneltrd K HL Q A R A S A Q = R ¬ Q ˙ R ˙ S P
16 15 ex K HL Q A R A S A Q = R ¬ Q ˙ R ˙ S P
17 16 necon2ad K HL Q A R A S A Q ˙ R ˙ S P Q R
18 hllat K HL K Lat
19 18 adantr K HL Q A R A S A K Lat
20 simpr3 K HL Q A R A S A S A
21 eqid Base K = Base K
22 21 3 atbase S A S Base K
23 20 22 syl K HL Q A R A S A S Base K
24 21 2 3 hlatjcl K HL Q A R A Q ˙ R Base K
25 24 3adant3r3 K HL Q A R A S A Q ˙ R Base K
26 21 1 2 latleeqj2 K Lat S Base K Q ˙ R Base K S ˙ Q ˙ R Q ˙ R ˙ S = Q ˙ R
27 19 23 25 26 syl3anc K HL Q A R A S A S ˙ Q ˙ R Q ˙ R ˙ S = Q ˙ R
28 2 3 4 2atnelpln K HL Q A R A ¬ Q ˙ R P
29 28 3adant3r3 K HL Q A R A S A ¬ Q ˙ R P
30 eleq1 Q ˙ R ˙ S = Q ˙ R Q ˙ R ˙ S P Q ˙ R P
31 30 notbid Q ˙ R ˙ S = Q ˙ R ¬ Q ˙ R ˙ S P ¬ Q ˙ R P
32 29 31 syl5ibrcom K HL Q A R A S A Q ˙ R ˙ S = Q ˙ R ¬ Q ˙ R ˙ S P
33 27 32 sylbid K HL Q A R A S A S ˙ Q ˙ R ¬ Q ˙ R ˙ S P
34 33 con2d K HL Q A R A S A Q ˙ R ˙ S P ¬ S ˙ Q ˙ R
35 17 34 jcad K HL Q A R A S A Q ˙ R ˙ S P Q R ¬ S ˙ Q ˙ R
36 1 2 3 4 lplni2 K HL Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R ˙ S P
37 36 3expia K HL Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R ˙ S P
38 35 37 impbid K HL Q A R A S A Q ˙ R ˙ S P Q R ¬ S ˙ Q ˙ R