Metamath Proof Explorer


Theorem islpln2ah

Description: The predicate "is a lattice plane" for join of atoms. Version of islpln2a expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙ = K
islpln2a.j ˙ = join K
islpln2a.a A = Atoms K
islpln2a.p P = LPlanes K
islpln2a.y Y = Q ˙ R ˙ S
Assertion islpln2ah K HL Q A R A S A Y P Q R ¬ S ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙ = K
2 islpln2a.j ˙ = join K
3 islpln2a.a A = Atoms K
4 islpln2a.p P = LPlanes K
5 islpln2a.y Y = Q ˙ R ˙ S
6 5 eleq1i Y P Q ˙ R ˙ S P
7 1 2 3 4 islpln2a K HL Q A R A S A Q ˙ R ˙ S P Q R ¬ S ˙ Q ˙ R
8 6 7 syl5bb K HL Q A R A S A Y P Q R ¬ S ˙ Q ˙ R