Metamath Proof Explorer


Theorem islpln4

Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnset.b B=BaseK
lplnset.c C=K
lplnset.n N=LLinesK
lplnset.p P=LPlanesK
Assertion islpln4 KAXBXPyNyCX

Proof

Step Hyp Ref Expression
1 lplnset.b B=BaseK
2 lplnset.c C=K
3 lplnset.n N=LLinesK
4 lplnset.p P=LPlanesK
5 1 2 3 4 islpln KAXPXByNyCX
6 5 baibd KAXBXPyNyCX