Metamath Proof Explorer


Theorem islshpsm

Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses islshpsm.v V = Base W
islshpsm.n N = LSpan W
islshpsm.s S = LSubSp W
islshpsm.p ˙ = LSSum W
islshpsm.h H = LSHyp W
islshpsm.w φ W LMod
Assertion islshpsm φ U H U S U V v V U ˙ N v = V

Proof

Step Hyp Ref Expression
1 islshpsm.v V = Base W
2 islshpsm.n N = LSpan W
3 islshpsm.s S = LSubSp W
4 islshpsm.p ˙ = LSSum W
5 islshpsm.h H = LSHyp W
6 islshpsm.w φ W LMod
7 1 2 3 5 islshp W LMod U H U S U V v V N U v = V
8 6 7 syl φ U H U S U V v V N U v = V
9 6 ad2antrr φ U S U V v V W LMod
10 simplrl φ U S U V v V U S
11 3 2 lspid W LMod U S N U = U
12 9 10 11 syl2anc φ U S U V v V N U = U
13 12 uneq1d φ U S U V v V N U N v = U N v
14 13 fveq2d φ U S U V v V N N U N v = N U N v
15 1 3 lssss U S U V
16 10 15 syl φ U S U V v V U V
17 snssi v V v V
18 17 adantl φ U S U V v V v V
19 1 2 lspun W LMod U V v V N U v = N N U N v
20 9 16 18 19 syl3anc φ U S U V v V N U v = N N U N v
21 1 3 2 lspcl W LMod v V N v S
22 9 18 21 syl2anc φ U S U V v V N v S
23 3 2 4 lsmsp W LMod U S N v S U ˙ N v = N U N v
24 9 10 22 23 syl3anc φ U S U V v V U ˙ N v = N U N v
25 14 20 24 3eqtr4rd φ U S U V v V U ˙ N v = N U v
26 25 eqeq1d φ U S U V v V U ˙ N v = V N U v = V
27 26 rexbidva φ U S U V v V U ˙ N v = V v V N U v = V
28 27 pm5.32da φ U S U V v V U ˙ N v = V U S U V v V N U v = V
29 28 bicomd φ U S U V v V N U v = V U S U V v V U ˙ N v = V
30 df-3an U S U V v V N U v = V U S U V v V N U v = V
31 df-3an U S U V v V U ˙ N v = V U S U V v V U ˙ N v = V
32 29 30 31 3bitr4g φ U S U V v V N U v = V U S U V v V U ˙ N v = V
33 8 32 bitrd φ U H U S U V v V U ˙ N v = V