Step |
Hyp |
Ref |
Expression |
1 |
|
islss3.x |
|
2 |
|
islss3.v |
|
3 |
|
islss3.s |
|
4 |
2 3
|
lssss |
|
5 |
4
|
adantl |
|
6 |
1 2
|
ressbas2 |
|
7 |
6
|
adantl |
|
8 |
4 7
|
sylan2 |
|
9 |
|
eqid |
|
10 |
1 9
|
ressplusg |
|
11 |
10
|
adantl |
|
12 |
|
eqid |
|
13 |
1 12
|
resssca |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
1 15
|
ressvsca |
|
17 |
16
|
adantl |
|
18 |
|
eqidd |
|
19 |
|
eqidd |
|
20 |
|
eqidd |
|
21 |
|
eqidd |
|
22 |
12
|
lmodring |
|
23 |
22
|
adantr |
|
24 |
3
|
lsssubg |
|
25 |
1
|
subggrp |
|
26 |
24 25
|
syl |
|
27 |
|
eqid |
|
28 |
12 15 27 3
|
lssvscl |
|
29 |
28
|
3impb |
|
30 |
|
simpll |
|
31 |
|
simpr1 |
|
32 |
4
|
ad2antlr |
|
33 |
|
simpr2 |
|
34 |
32 33
|
sseldd |
|
35 |
|
simpr3 |
|
36 |
32 35
|
sseldd |
|
37 |
2 9 12 15 27
|
lmodvsdi |
|
38 |
30 31 34 36 37
|
syl13anc |
|
39 |
|
simpll |
|
40 |
|
simpr1 |
|
41 |
|
simpr2 |
|
42 |
4
|
ad2antlr |
|
43 |
|
simpr3 |
|
44 |
42 43
|
sseldd |
|
45 |
|
eqid |
|
46 |
2 9 12 15 27 45
|
lmodvsdir |
|
47 |
39 40 41 44 46
|
syl13anc |
|
48 |
|
eqid |
|
49 |
2 12 15 27 48
|
lmodvsass |
|
50 |
39 40 41 44 49
|
syl13anc |
|
51 |
5
|
sselda |
|
52 |
|
eqid |
|
53 |
2 12 15 52
|
lmodvs1 |
|
54 |
53
|
adantlr |
|
55 |
51 54
|
syldan |
|
56 |
8 11 14 17 18 19 20 21 23 26 29 38 47 50 55
|
islmodd |
|
57 |
5 56
|
jca |
|
58 |
|
simprl |
|
59 |
58 6
|
syl |
|
60 |
|
fvex |
|
61 |
59 60
|
eqeltrdi |
|
62 |
1 12
|
resssca |
|
63 |
61 62
|
syl |
|
64 |
63
|
eqcomd |
|
65 |
|
eqidd |
|
66 |
2
|
a1i |
|
67 |
1 9
|
ressplusg |
|
68 |
61 67
|
syl |
|
69 |
68
|
eqcomd |
|
70 |
1 15
|
ressvsca |
|
71 |
61 70
|
syl |
|
72 |
71
|
eqcomd |
|
73 |
3
|
a1i |
|
74 |
59 58
|
eqsstrrd |
|
75 |
|
lmodgrp |
|
76 |
75
|
ad2antll |
|
77 |
|
eqid |
|
78 |
77
|
grpbn0 |
|
79 |
76 78
|
syl |
|
80 |
|
eqid |
|
81 |
77 80
|
lss1 |
|
82 |
81
|
ad2antll |
|
83 |
|
eqid |
|
84 |
|
eqid |
|
85 |
|
eqid |
|
86 |
|
eqid |
|
87 |
83 84 85 86 80
|
lsscl |
|
88 |
82 87
|
sylan |
|
89 |
64 65 66 69 72 73 74 79 88
|
islssd |
|
90 |
59 89
|
eqeltrd |
|
91 |
57 90
|
impbida |
|