Metamath Proof Explorer


Theorem islss4

Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses islss4.f F = Scalar W
islss4.b B = Base F
islss4.v V = Base W
islss4.t · ˙ = W
islss4.s S = LSubSp W
Assertion islss4 W LMod U S U SubGrp W a B b U a · ˙ b U

Proof

Step Hyp Ref Expression
1 islss4.f F = Scalar W
2 islss4.b B = Base F
3 islss4.v V = Base W
4 islss4.t · ˙ = W
5 islss4.s S = LSubSp W
6 5 lsssubg W LMod U S U SubGrp W
7 1 4 2 5 lssvscl W LMod U S a B b U a · ˙ b U
8 7 ralrimivva W LMod U S a B b U a · ˙ b U
9 6 8 jca W LMod U S U SubGrp W a B b U a · ˙ b U
10 3 subgss U SubGrp W U V
11 10 ad2antrl W LMod U SubGrp W a B b U a · ˙ b U U V
12 eqid 0 W = 0 W
13 12 subg0cl U SubGrp W 0 W U
14 13 ne0d U SubGrp W U
15 14 ad2antrl W LMod U SubGrp W a B b U a · ˙ b U U
16 eqid + W = + W
17 16 subgcl U SubGrp W a · ˙ b U c U a · ˙ b + W c U
18 17 3exp U SubGrp W a · ˙ b U c U a · ˙ b + W c U
19 18 adantl W LMod U SubGrp W a · ˙ b U c U a · ˙ b + W c U
20 19 ralrimdv W LMod U SubGrp W a · ˙ b U c U a · ˙ b + W c U
21 20 ralimdv W LMod U SubGrp W b U a · ˙ b U b U c U a · ˙ b + W c U
22 21 ralimdv W LMod U SubGrp W a B b U a · ˙ b U a B b U c U a · ˙ b + W c U
23 22 impr W LMod U SubGrp W a B b U a · ˙ b U a B b U c U a · ˙ b + W c U
24 1 2 3 16 4 5 islss U S U V U a B b U c U a · ˙ b + W c U
25 11 15 23 24 syl3anbrc W LMod U SubGrp W a B b U a · ˙ b U U S
26 9 25 impbida W LMod U S U SubGrp W a B b U a · ˙ b U