Metamath Proof Explorer


Theorem islssfg

Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses islssfg.x X = W 𝑠 U
islssfg.s S = LSubSp W
islssfg.n N = LSpan W
Assertion islssfg W LMod U S X LFinGen b 𝒫 U b Fin N b = U

Proof

Step Hyp Ref Expression
1 islssfg.x X = W 𝑠 U
2 islssfg.s S = LSubSp W
3 islssfg.n N = LSpan W
4 eqid Base W = Base W
5 4 2 lssss U S U Base W
6 1 4 ressbas2 U Base W U = Base X
7 5 6 syl U S U = Base X
8 7 pweqd U S 𝒫 U = 𝒫 Base X
9 8 rexeqdv U S b 𝒫 U b Fin LSpan X b = Base X b 𝒫 Base X b Fin LSpan X b = Base X
10 9 adantl W LMod U S b 𝒫 U b Fin LSpan X b = Base X b 𝒫 Base X b Fin LSpan X b = Base X
11 elpwi b 𝒫 U b U
12 eqid LSpan X = LSpan X
13 1 3 12 2 lsslsp W LMod U S b U N b = LSpan X b
14 13 3expa W LMod U S b U N b = LSpan X b
15 11 14 sylan2 W LMod U S b 𝒫 U N b = LSpan X b
16 7 ad2antlr W LMod U S b 𝒫 U U = Base X
17 15 16 eqeq12d W LMod U S b 𝒫 U N b = U LSpan X b = Base X
18 17 anbi2d W LMod U S b 𝒫 U b Fin N b = U b Fin LSpan X b = Base X
19 18 rexbidva W LMod U S b 𝒫 U b Fin N b = U b 𝒫 U b Fin LSpan X b = Base X
20 1 2 lsslmod W LMod U S X LMod
21 eqid Base X = Base X
22 21 12 islmodfg X LMod X LFinGen b 𝒫 Base X b Fin LSpan X b = Base X
23 20 22 syl W LMod U S X LFinGen b 𝒫 Base X b Fin LSpan X b = Base X
24 10 19 23 3bitr4rd W LMod U S X LFinGen b 𝒫 U b Fin N b = U