Metamath Proof Explorer


Theorem islssfgi

Description: Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islssfgi.n N = LSpan W
islssfgi.v V = Base W
islssfgi.x X = W 𝑠 N B
Assertion islssfgi W LMod B V B Fin X LFinGen

Proof

Step Hyp Ref Expression
1 islssfgi.n N = LSpan W
2 islssfgi.v V = Base W
3 islssfgi.x X = W 𝑠 N B
4 2 fvexi V V
5 4 elpw2 B 𝒫 V B V
6 5 biimpri B V B 𝒫 V
7 6 3ad2ant2 W LMod B V B Fin B 𝒫 V
8 simp3 W LMod B V B Fin B Fin
9 7 8 elind W LMod B V B Fin B 𝒫 V Fin
10 eqid N B = N B
11 fveqeq2 a = B N a = N B N B = N B
12 11 rspcev B 𝒫 V Fin N B = N B a 𝒫 V Fin N a = N B
13 9 10 12 sylancl W LMod B V B Fin a 𝒫 V Fin N a = N B
14 simp1 W LMod B V B Fin W LMod
15 eqid LSubSp W = LSubSp W
16 2 15 1 lspcl W LMod B V N B LSubSp W
17 16 3adant3 W LMod B V B Fin N B LSubSp W
18 3 15 1 2 islssfg2 W LMod N B LSubSp W X LFinGen a 𝒫 V Fin N a = N B
19 14 17 18 syl2anc W LMod B V B Fin X LFinGen a 𝒫 V Fin N a = N B
20 13 19 mpbird W LMod B V B Fin X LFinGen