Metamath Proof Explorer


Theorem islvol2aN

Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses islvol2a.l ˙ = K
islvol2a.j ˙ = join K
islvol2a.a A = Atoms K
islvol2a.v V = LVols K
Assertion islvol2aN K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 islvol2a.l ˙ = K
2 islvol2a.j ˙ = join K
3 islvol2a.a A = Atoms K
4 islvol2a.v V = LVols K
5 oveq1 P = Q P ˙ Q = Q ˙ Q
6 simpl1 K HL P A Q A R A S A K HL
7 simpl3 K HL P A Q A R A S A Q A
8 2 3 hlatjidm K HL Q A Q ˙ Q = Q
9 6 7 8 syl2anc K HL P A Q A R A S A Q ˙ Q = Q
10 5 9 sylan9eqr K HL P A Q A R A S A P = Q P ˙ Q = Q
11 10 oveq1d K HL P A Q A R A S A P = Q P ˙ Q ˙ R = Q ˙ R
12 11 oveq1d K HL P A Q A R A S A P = Q P ˙ Q ˙ R ˙ S = Q ˙ R ˙ S
13 simprl K HL P A Q A R A S A R A
14 simprr K HL P A Q A R A S A S A
15 2 3 4 3atnelvolN K HL Q A R A S A ¬ Q ˙ R ˙ S V
16 6 7 13 14 15 syl13anc K HL P A Q A R A S A ¬ Q ˙ R ˙ S V
17 16 adantr K HL P A Q A R A S A P = Q ¬ Q ˙ R ˙ S V
18 12 17 eqneltrd K HL P A Q A R A S A P = Q ¬ P ˙ Q ˙ R ˙ S V
19 18 ex K HL P A Q A R A S A P = Q ¬ P ˙ Q ˙ R ˙ S V
20 19 necon2ad K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V P Q
21 6 hllatd K HL P A Q A R A S A K Lat
22 eqid Base K = Base K
23 22 3 atbase R A R Base K
24 23 ad2antrl K HL P A Q A R A S A R Base K
25 22 2 3 hlatjcl K HL P A Q A P ˙ Q Base K
26 25 adantr K HL P A Q A R A S A P ˙ Q Base K
27 22 1 2 latleeqj2 K Lat R Base K P ˙ Q Base K R ˙ P ˙ Q P ˙ Q ˙ R = P ˙ Q
28 21 24 26 27 syl3anc K HL P A Q A R A S A R ˙ P ˙ Q P ˙ Q ˙ R = P ˙ Q
29 simpl2 K HL P A Q A R A S A P A
30 2 3 4 3atnelvolN K HL P A Q A S A ¬ P ˙ Q ˙ S V
31 6 29 7 14 30 syl13anc K HL P A Q A R A S A ¬ P ˙ Q ˙ S V
32 oveq1 P ˙ Q ˙ R = P ˙ Q P ˙ Q ˙ R ˙ S = P ˙ Q ˙ S
33 32 eleq1d P ˙ Q ˙ R = P ˙ Q P ˙ Q ˙ R ˙ S V P ˙ Q ˙ S V
34 33 notbid P ˙ Q ˙ R = P ˙ Q ¬ P ˙ Q ˙ R ˙ S V ¬ P ˙ Q ˙ S V
35 31 34 syl5ibrcom K HL P A Q A R A S A P ˙ Q ˙ R = P ˙ Q ¬ P ˙ Q ˙ R ˙ S V
36 28 35 sylbid K HL P A Q A R A S A R ˙ P ˙ Q ¬ P ˙ Q ˙ R ˙ S V
37 36 con2d K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V ¬ R ˙ P ˙ Q
38 22 3 atbase S A S Base K
39 38 ad2antll K HL P A Q A R A S A S Base K
40 22 2 latjcl K Lat P ˙ Q Base K R Base K P ˙ Q ˙ R Base K
41 21 26 24 40 syl3anc K HL P A Q A R A S A P ˙ Q ˙ R Base K
42 22 1 2 latleeqj2 K Lat S Base K P ˙ Q ˙ R Base K S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R
43 21 39 41 42 syl3anc K HL P A Q A R A S A S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R
44 2 3 4 3atnelvolN K HL P A Q A R A ¬ P ˙ Q ˙ R V
45 6 29 7 13 44 syl13anc K HL P A Q A R A S A ¬ P ˙ Q ˙ R V
46 eleq1 P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R P ˙ Q ˙ R ˙ S V P ˙ Q ˙ R V
47 46 notbid P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S V ¬ P ˙ Q ˙ R V
48 45 47 syl5ibrcom K HL P A Q A R A S A P ˙ Q ˙ R ˙ S = P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S V
49 43 48 sylbid K HL P A Q A R A S A S ˙ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S V
50 49 con2d K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V ¬ S ˙ P ˙ Q ˙ R
51 20 37 50 3jcad K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R
52 1 2 3 4 lvoli2 K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S V
53 52 3expia K HL P A Q A R A S A P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S V
54 51 53 impbid K HL P A Q A R A S A P ˙ Q ˙ R ˙ S V P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R