Step |
Hyp |
Ref |
Expression |
1 |
|
islvol2a.l |
|
2 |
|
islvol2a.j |
|
3 |
|
islvol2a.a |
|
4 |
|
islvol2a.v |
|
5 |
|
oveq1 |
|
6 |
|
simpl1 |
|
7 |
|
simpl3 |
|
8 |
2 3
|
hlatjidm |
|
9 |
6 7 8
|
syl2anc |
|
10 |
5 9
|
sylan9eqr |
|
11 |
10
|
oveq1d |
|
12 |
11
|
oveq1d |
|
13 |
|
simprl |
|
14 |
|
simprr |
|
15 |
2 3 4
|
3atnelvolN |
|
16 |
6 7 13 14 15
|
syl13anc |
|
17 |
16
|
adantr |
|
18 |
12 17
|
eqneltrd |
|
19 |
18
|
ex |
|
20 |
19
|
necon2ad |
|
21 |
6
|
hllatd |
|
22 |
|
eqid |
|
23 |
22 3
|
atbase |
|
24 |
23
|
ad2antrl |
|
25 |
22 2 3
|
hlatjcl |
|
26 |
25
|
adantr |
|
27 |
22 1 2
|
latleeqj2 |
|
28 |
21 24 26 27
|
syl3anc |
|
29 |
|
simpl2 |
|
30 |
2 3 4
|
3atnelvolN |
|
31 |
6 29 7 14 30
|
syl13anc |
|
32 |
|
oveq1 |
|
33 |
32
|
eleq1d |
|
34 |
33
|
notbid |
|
35 |
31 34
|
syl5ibrcom |
|
36 |
28 35
|
sylbid |
|
37 |
36
|
con2d |
|
38 |
22 3
|
atbase |
|
39 |
38
|
ad2antll |
|
40 |
22 2
|
latjcl |
|
41 |
21 26 24 40
|
syl3anc |
|
42 |
22 1 2
|
latleeqj2 |
|
43 |
21 39 41 42
|
syl3anc |
|
44 |
2 3 4
|
3atnelvolN |
|
45 |
6 29 7 13 44
|
syl13anc |
|
46 |
|
eleq1 |
|
47 |
46
|
notbid |
|
48 |
45 47
|
syl5ibrcom |
|
49 |
43 48
|
sylbid |
|
50 |
49
|
con2d |
|
51 |
20 37 50
|
3jcad |
|
52 |
1 2 3 4
|
lvoli2 |
|
53 |
52
|
3expia |
|
54 |
51 53
|
impbid |
|