Metamath Proof Explorer


Theorem ismbfcn

Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbfcn F : A F MblFn F MblFn F MblFn

Proof

Step Hyp Ref Expression
1 mbfdm F MblFn dom F dom vol
2 fdm F : A dom F = A
3 2 eleq1d F : A dom F dom vol A dom vol
4 1 3 syl5ib F : A F MblFn A dom vol
5 mbfdm F MblFn dom F dom vol
6 5 adantr F MblFn F MblFn dom F dom vol
7 ref :
8 fco : F : A F : A
9 7 8 mpan F : A F : A
10 9 fdmd F : A dom F = A
11 10 eleq1d F : A dom F dom vol A dom vol
12 6 11 syl5ib F : A F MblFn F MblFn A dom vol
13 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
14 9 adantr F : A A dom vol F : A
15 ismbf F : A F MblFn x ran . F -1 x dom vol
16 14 15 syl F : A A dom vol F MblFn x ran . F -1 x dom vol
17 imf :
18 fco : F : A F : A
19 17 18 mpan F : A F : A
20 19 adantr F : A A dom vol F : A
21 ismbf F : A F MblFn x ran . F -1 x dom vol
22 20 21 syl F : A A dom vol F MblFn x ran . F -1 x dom vol
23 16 22 anbi12d F : A A dom vol F MblFn F MblFn x ran . F -1 x dom vol x ran . F -1 x dom vol
24 r19.26 x ran . F -1 x dom vol F -1 x dom vol x ran . F -1 x dom vol x ran . F -1 x dom vol
25 23 24 bitr4di F : A A dom vol F MblFn F MblFn x ran . F -1 x dom vol F -1 x dom vol
26 mblss A dom vol A
27 cnex V
28 reex V
29 elpm2r V V F : A A F 𝑝𝑚
30 27 28 29 mpanl12 F : A A F 𝑝𝑚
31 26 30 sylan2 F : A A dom vol F 𝑝𝑚
32 31 biantrurd F : A A dom vol x ran . F -1 x dom vol F -1 x dom vol F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
33 25 32 bitrd F : A A dom vol F MblFn F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
34 13 33 bitr4id F : A A dom vol F MblFn F MblFn F MblFn
35 34 ex F : A A dom vol F MblFn F MblFn F MblFn
36 4 12 35 pm5.21ndd F : A F MblFn F MblFn F MblFn