Metamath Proof Explorer


Theorem ismbl

Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set x in a "nice" way, that is, if the measure of the pieces x i^i A and x \ A sum up to the measure of x (assuming that the measure of x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion ismbl A dom vol A x 𝒫 vol * x vol * x = vol * x A + vol * x A

Proof

Step Hyp Ref Expression
1 ineq2 y = A x y = x A
2 1 fveq2d y = A vol * x y = vol * x A
3 difeq2 y = A x y = x A
4 3 fveq2d y = A vol * x y = vol * x A
5 2 4 oveq12d y = A vol * x y + vol * x y = vol * x A + vol * x A
6 5 eqeq2d y = A vol * x = vol * x y + vol * x y vol * x = vol * x A + vol * x A
7 6 ralbidv y = A x vol * -1 vol * x = vol * x y + vol * x y x vol * -1 vol * x = vol * x A + vol * x A
8 df-vol vol = vol * y | x vol * -1 vol * x = vol * x y + vol * x y
9 8 dmeqi dom vol = dom vol * y | x vol * -1 vol * x = vol * x y + vol * x y
10 dmres dom vol * y | x vol * -1 vol * x = vol * x y + vol * x y = y | x vol * -1 vol * x = vol * x y + vol * x y dom vol *
11 ovolf vol * : 𝒫 0 +∞
12 11 fdmi dom vol * = 𝒫
13 12 ineq2i y | x vol * -1 vol * x = vol * x y + vol * x y dom vol * = y | x vol * -1 vol * x = vol * x y + vol * x y 𝒫
14 9 10 13 3eqtri dom vol = y | x vol * -1 vol * x = vol * x y + vol * x y 𝒫
15 dfrab2 y 𝒫 | x vol * -1 vol * x = vol * x y + vol * x y = y | x vol * -1 vol * x = vol * x y + vol * x y 𝒫
16 14 15 eqtr4i dom vol = y 𝒫 | x vol * -1 vol * x = vol * x y + vol * x y
17 7 16 elrab2 A dom vol A 𝒫 x vol * -1 vol * x = vol * x A + vol * x A
18 reex V
19 18 elpw2 A 𝒫 A
20 ffn vol * : 𝒫 0 +∞ vol * Fn 𝒫
21 elpreima vol * Fn 𝒫 x vol * -1 x 𝒫 vol * x
22 11 20 21 mp2b x vol * -1 x 𝒫 vol * x
23 22 imbi1i x vol * -1 vol * x = vol * x A + vol * x A x 𝒫 vol * x vol * x = vol * x A + vol * x A
24 impexp x 𝒫 vol * x vol * x = vol * x A + vol * x A x 𝒫 vol * x vol * x = vol * x A + vol * x A
25 23 24 bitri x vol * -1 vol * x = vol * x A + vol * x A x 𝒫 vol * x vol * x = vol * x A + vol * x A
26 25 ralbii2 x vol * -1 vol * x = vol * x A + vol * x A x 𝒫 vol * x vol * x = vol * x A + vol * x A
27 19 26 anbi12i A 𝒫 x vol * -1 vol * x = vol * x A + vol * x A A x 𝒫 vol * x vol * x = vol * x A + vol * x A
28 17 27 bitri A dom vol A x 𝒫 vol * x vol * x = vol * x A + vol * x A