Metamath Proof Explorer


Theorem ismbl2

Description: From ovolun , it suffices to show that the measure of x is at least the sum of the measures of x i^i A and x \ A . (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Assertion ismbl2 A dom vol A x 𝒫 vol * x vol * x A + vol * x A vol * x

Proof

Step Hyp Ref Expression
1 ismbl A dom vol A x 𝒫 vol * x vol * x = vol * x A + vol * x A
2 elpwi x 𝒫 x
3 inundif x A x A = x
4 3 fveq2i vol * x A x A = vol * x
5 inss1 x A x
6 simprl A x vol * x x
7 5 6 sstrid A x vol * x x A
8 ovolsscl x A x x vol * x vol * x A
9 5 8 mp3an1 x vol * x vol * x A
10 9 adantl A x vol * x vol * x A
11 difss x A x
12 11 6 sstrid A x vol * x x A
13 ovolsscl x A x x vol * x vol * x A
14 11 13 mp3an1 x vol * x vol * x A
15 14 adantl A x vol * x vol * x A
16 ovolun x A vol * x A x A vol * x A vol * x A x A vol * x A + vol * x A
17 7 10 12 15 16 syl22anc A x vol * x vol * x A x A vol * x A + vol * x A
18 4 17 eqbrtrrid A x vol * x vol * x vol * x A + vol * x A
19 simprr A x vol * x vol * x
20 10 15 readdcld A x vol * x vol * x A + vol * x A
21 19 20 letri3d A x vol * x vol * x = vol * x A + vol * x A vol * x vol * x A + vol * x A vol * x A + vol * x A vol * x
22 18 21 mpbirand A x vol * x vol * x = vol * x A + vol * x A vol * x A + vol * x A vol * x
23 22 expr A x vol * x vol * x = vol * x A + vol * x A vol * x A + vol * x A vol * x
24 23 pm5.74d A x vol * x vol * x = vol * x A + vol * x A vol * x vol * x A + vol * x A vol * x
25 2 24 sylan2 A x 𝒫 vol * x vol * x = vol * x A + vol * x A vol * x vol * x A + vol * x A vol * x
26 25 ralbidva A x 𝒫 vol * x vol * x = vol * x A + vol * x A x 𝒫 vol * x vol * x A + vol * x A vol * x
27 26 pm5.32i A x 𝒫 vol * x vol * x = vol * x A + vol * x A A x 𝒫 vol * x vol * x A + vol * x A vol * x
28 1 27 bitri A dom vol A x 𝒫 vol * x vol * x A + vol * x A vol * x