Step |
Hyp |
Ref |
Expression |
1 |
|
ismbl2 |
|
2 |
|
inss1 |
|
3 |
2
|
a1i |
|
4 |
|
elpwi |
|
5 |
4
|
adantr |
|
6 |
|
simpr |
|
7 |
|
ovolsscl |
|
8 |
3 5 6 7
|
syl3anc |
|
9 |
|
difssd |
|
10 |
|
ovolsscl |
|
11 |
9 5 6 10
|
syl3anc |
|
12 |
8 11
|
rexaddd |
|
13 |
12
|
adantlr |
|
14 |
|
id |
|
15 |
14
|
imp |
|
16 |
15
|
adantll |
|
17 |
13 16
|
eqbrtrd |
|
18 |
2 4
|
sstrid |
|
19 |
|
ovolcl |
|
20 |
18 19
|
syl |
|
21 |
4
|
ssdifssd |
|
22 |
|
ovolcl |
|
23 |
21 22
|
syl |
|
24 |
20 23
|
xaddcld |
|
25 |
|
pnfge |
|
26 |
24 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
|
ovolf |
|
29 |
28
|
ffvelrni |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
|
xrge0nre |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
eqcomd |
|
35 |
27 34
|
breqtrd |
|
36 |
35
|
adantlr |
|
37 |
17 36
|
pm2.61dan |
|
38 |
37
|
ex |
|
39 |
12
|
eqcomd |
|
40 |
39
|
3adant2 |
|
41 |
|
simp2 |
|
42 |
40 41
|
eqbrtrd |
|
43 |
42
|
3exp |
|
44 |
38 43
|
impbid |
|
45 |
44
|
ralbiia |
|
46 |
45
|
anbi2i |
|
47 |
1 46
|
bitri |
|