Metamath Proof Explorer


Theorem ismbl3

Description: The predicate " A is Lebesgue-measurable". Similar to ismbl2 , but here +e is used, and the precondition ( vol*x ) e. RR can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion ismbl3 A dom vol A x 𝒫 vol * x A + 𝑒 vol * x A vol * x

Proof

Step Hyp Ref Expression
1 ismbl2 A dom vol A x 𝒫 vol * x vol * x A + vol * x A vol * x
2 inss1 x A x
3 2 a1i x 𝒫 vol * x x A x
4 elpwi x 𝒫 x
5 4 adantr x 𝒫 vol * x x
6 simpr x 𝒫 vol * x vol * x
7 ovolsscl x A x x vol * x vol * x A
8 3 5 6 7 syl3anc x 𝒫 vol * x vol * x A
9 difssd x 𝒫 vol * x x A x
10 ovolsscl x A x x vol * x vol * x A
11 9 5 6 10 syl3anc x 𝒫 vol * x vol * x A
12 8 11 rexaddd x 𝒫 vol * x vol * x A + 𝑒 vol * x A = vol * x A + vol * x A
13 12 adantlr x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x vol * x A + 𝑒 vol * x A = vol * x A + vol * x A
14 id vol * x vol * x A + vol * x A vol * x vol * x vol * x A + vol * x A vol * x
15 14 imp vol * x vol * x A + vol * x A vol * x vol * x vol * x A + vol * x A vol * x
16 15 adantll x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x vol * x A + vol * x A vol * x
17 13 16 eqbrtrd x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x vol * x A + 𝑒 vol * x A vol * x
18 2 4 sstrid x 𝒫 x A
19 ovolcl x A vol * x A *
20 18 19 syl x 𝒫 vol * x A *
21 4 ssdifssd x 𝒫 x A
22 ovolcl x A vol * x A *
23 21 22 syl x 𝒫 vol * x A *
24 20 23 xaddcld x 𝒫 vol * x A + 𝑒 vol * x A *
25 pnfge vol * x A + 𝑒 vol * x A * vol * x A + 𝑒 vol * x A +∞
26 24 25 syl x 𝒫 vol * x A + 𝑒 vol * x A +∞
27 26 adantr x 𝒫 ¬ vol * x vol * x A + 𝑒 vol * x A +∞
28 ovolf vol * : 𝒫 0 +∞
29 28 ffvelrni x 𝒫 vol * x 0 +∞
30 29 adantr x 𝒫 ¬ vol * x vol * x 0 +∞
31 simpr x 𝒫 ¬ vol * x ¬ vol * x
32 xrge0nre vol * x 0 +∞ ¬ vol * x vol * x = +∞
33 30 31 32 syl2anc x 𝒫 ¬ vol * x vol * x = +∞
34 33 eqcomd x 𝒫 ¬ vol * x +∞ = vol * x
35 27 34 breqtrd x 𝒫 ¬ vol * x vol * x A + 𝑒 vol * x A vol * x
36 35 adantlr x 𝒫 vol * x vol * x A + vol * x A vol * x ¬ vol * x vol * x A + 𝑒 vol * x A vol * x
37 17 36 pm2.61dan x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x A + 𝑒 vol * x A vol * x
38 37 ex x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x A + 𝑒 vol * x A vol * x
39 12 eqcomd x 𝒫 vol * x vol * x A + vol * x A = vol * x A + 𝑒 vol * x A
40 39 3adant2 x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x vol * x A + vol * x A = vol * x A + 𝑒 vol * x A
41 simp2 x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x vol * x A + 𝑒 vol * x A vol * x
42 40 41 eqbrtrd x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x vol * x A + vol * x A vol * x
43 42 3exp x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x vol * x A + vol * x A vol * x
44 38 43 impbid x 𝒫 vol * x vol * x A + vol * x A vol * x vol * x A + 𝑒 vol * x A vol * x
45 44 ralbiia x 𝒫 vol * x vol * x A + vol * x A vol * x x 𝒫 vol * x A + 𝑒 vol * x A vol * x
46 45 anbi2i A x 𝒫 vol * x vol * x A + vol * x A vol * x A x 𝒫 vol * x A + 𝑒 vol * x A vol * x
47 1 46 bitri A dom vol A x 𝒫 vol * x A + 𝑒 vol * x A vol * x