Metamath Proof Explorer


Theorem ismbl4

Description: The predicate " A is Lebesgue-measurable". Similar to ismbl , but here +e is used, and the precondition ( vol*x ) e. RR can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion ismbl4 A dom vol A x 𝒫 vol * x = vol * x A + 𝑒 vol * x A

Proof

Step Hyp Ref Expression
1 ismbl3 A dom vol A x 𝒫 vol * x A + 𝑒 vol * x A vol * x
2 elpwi x 𝒫 x
3 ovolcl x vol * x *
4 2 3 syl x 𝒫 vol * x *
5 4 adantr x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x *
6 inss1 x A x
7 6 2 sstrid x 𝒫 x A
8 ovolcl x A vol * x A *
9 7 8 syl x 𝒫 vol * x A *
10 2 ssdifssd x 𝒫 x A
11 ovolcl x A vol * x A *
12 10 11 syl x 𝒫 vol * x A *
13 9 12 xaddcld x 𝒫 vol * x A + 𝑒 vol * x A *
14 13 adantr x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x A + 𝑒 vol * x A *
15 2 ovolsplit x 𝒫 vol * x vol * x A + 𝑒 vol * x A
16 15 adantr x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x vol * x A + 𝑒 vol * x A
17 simpr x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x A + 𝑒 vol * x A vol * x
18 5 14 16 17 xrletrid x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x = vol * x A + 𝑒 vol * x A
19 18 ex x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x = vol * x A + 𝑒 vol * x A
20 13 xrleidd x 𝒫 vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A
21 20 adantr x 𝒫 vol * x = vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A
22 id vol * x = vol * x A + 𝑒 vol * x A vol * x = vol * x A + 𝑒 vol * x A
23 22 eqcomd vol * x = vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A = vol * x
24 23 adantl x 𝒫 vol * x = vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A = vol * x
25 21 24 breqtrd x 𝒫 vol * x = vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A vol * x
26 25 ex x 𝒫 vol * x = vol * x A + 𝑒 vol * x A vol * x A + 𝑒 vol * x A vol * x
27 19 26 impbid x 𝒫 vol * x A + 𝑒 vol * x A vol * x vol * x = vol * x A + 𝑒 vol * x A
28 27 ralbiia x 𝒫 vol * x A + 𝑒 vol * x A vol * x x 𝒫 vol * x = vol * x A + 𝑒 vol * x A
29 28 anbi2i A x 𝒫 vol * x A + 𝑒 vol * x A vol * x A x 𝒫 vol * x = vol * x A + 𝑒 vol * x A
30 1 29 bitri A dom vol A x 𝒫 vol * x = vol * x A + 𝑒 vol * x A