Metamath Proof Explorer


Theorem ismgmid

Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b B = Base G
ismgmid.o 0 ˙ = 0 G
ismgmid.p + ˙ = + G
mgmidcl.e φ e B x B e + ˙ x = x x + ˙ e = x
Assertion ismgmid φ U B x B U + ˙ x = x x + ˙ U = x 0 ˙ = U

Proof

Step Hyp Ref Expression
1 ismgmid.b B = Base G
2 ismgmid.o 0 ˙ = 0 G
3 ismgmid.p + ˙ = + G
4 mgmidcl.e φ e B x B e + ˙ x = x x + ˙ e = x
5 id U B U B
6 mgmidmo * e B x B e + ˙ x = x x + ˙ e = x
7 reu5 ∃! e B x B e + ˙ x = x x + ˙ e = x e B x B e + ˙ x = x x + ˙ e = x * e B x B e + ˙ x = x x + ˙ e = x
8 4 6 7 sylanblrc φ ∃! e B x B e + ˙ x = x x + ˙ e = x
9 oveq1 e = U e + ˙ x = U + ˙ x
10 9 eqeq1d e = U e + ˙ x = x U + ˙ x = x
11 10 ovanraleqv e = U x B e + ˙ x = x x + ˙ e = x x B U + ˙ x = x x + ˙ U = x
12 11 riota2 U B ∃! e B x B e + ˙ x = x x + ˙ e = x x B U + ˙ x = x x + ˙ U = x ι e B | x B e + ˙ x = x x + ˙ e = x = U
13 5 8 12 syl2anr φ U B x B U + ˙ x = x x + ˙ U = x ι e B | x B e + ˙ x = x x + ˙ e = x = U
14 13 pm5.32da φ U B x B U + ˙ x = x x + ˙ U = x U B ι e B | x B e + ˙ x = x x + ˙ e = x = U
15 riotacl ∃! e B x B e + ˙ x = x x + ˙ e = x ι e B | x B e + ˙ x = x x + ˙ e = x B
16 8 15 syl φ ι e B | x B e + ˙ x = x x + ˙ e = x B
17 eleq1 ι e B | x B e + ˙ x = x x + ˙ e = x = U ι e B | x B e + ˙ x = x x + ˙ e = x B U B
18 16 17 syl5ibcom φ ι e B | x B e + ˙ x = x x + ˙ e = x = U U B
19 18 pm4.71rd φ ι e B | x B e + ˙ x = x x + ˙ e = x = U U B ι e B | x B e + ˙ x = x x + ˙ e = x = U
20 df-riota ι e B | x B e + ˙ x = x x + ˙ e = x = ι e | e B x B e + ˙ x = x x + ˙ e = x
21 1 3 2 grpidval 0 ˙ = ι e | e B x B e + ˙ x = x x + ˙ e = x
22 20 21 eqtr4i ι e B | x B e + ˙ x = x x + ˙ e = x = 0 ˙
23 22 eqeq1i ι e B | x B e + ˙ x = x x + ˙ e = x = U 0 ˙ = U
24 23 a1i φ ι e B | x B e + ˙ x = x x + ˙ e = x = U 0 ˙ = U
25 14 19 24 3bitr2d φ U B x B U + ˙ x = x x + ˙ U = x 0 ˙ = U