Metamath Proof Explorer


Theorem ismgmid2

Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b B = Base G
ismgmid.o 0 ˙ = 0 G
ismgmid.p + ˙ = + G
ismgmid2.u φ U B
ismgmid2.l φ x B U + ˙ x = x
ismgmid2.r φ x B x + ˙ U = x
Assertion ismgmid2 φ U = 0 ˙

Proof

Step Hyp Ref Expression
1 ismgmid.b B = Base G
2 ismgmid.o 0 ˙ = 0 G
3 ismgmid.p + ˙ = + G
4 ismgmid2.u φ U B
5 ismgmid2.l φ x B U + ˙ x = x
6 ismgmid2.r φ x B x + ˙ U = x
7 5 6 jca φ x B U + ˙ x = x x + ˙ U = x
8 7 ralrimiva φ x B U + ˙ x = x x + ˙ U = x
9 oveq1 e = U e + ˙ x = U + ˙ x
10 9 eqeq1d e = U e + ˙ x = x U + ˙ x = x
11 10 ovanraleqv e = U x B e + ˙ x = x x + ˙ e = x x B U + ˙ x = x x + ˙ U = x
12 11 rspcev U B x B U + ˙ x = x x + ˙ U = x e B x B e + ˙ x = x x + ˙ e = x
13 4 8 12 syl2anc φ e B x B e + ˙ x = x x + ˙ e = x
14 1 2 3 13 ismgmid φ U B x B U + ˙ x = x x + ˙ U = x 0 ˙ = U
15 4 8 14 mpbi2and φ 0 ˙ = U
16 15 eqcomd φ U = 0 ˙