Metamath Proof Explorer


Theorem ismgmn0

Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses ismgmn0.b B = Base M
ismgmn0.o No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion ismgmn0 Could not format assertion : No typesetting found for |- ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ismgmn0.b B = Base M
2 ismgmn0.o Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
3 1 eleq2i A B A Base M
4 3 biimpi A B A Base M
5 4 elfvexd A B M V
6 1 2 ismgm Could not format ( M e. _V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( M e. _V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-
7 5 6 syl Could not format ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-