| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismhm.b |
|
| 2 |
|
ismhm.c |
|
| 3 |
|
ismhm.p |
|
| 4 |
|
ismhm.q |
|
| 5 |
|
ismhm.z |
|
| 6 |
|
ismhm.y |
|
| 7 |
|
df-mhm |
|
| 8 |
7
|
elmpocl |
|
| 9 |
|
fveq2 |
|
| 10 |
9 2
|
eqtr4di |
|
| 11 |
|
fveq2 |
|
| 12 |
11 1
|
eqtr4di |
|
| 13 |
10 12
|
oveqan12rd |
|
| 14 |
12
|
adantr |
|
| 15 |
|
fveq2 |
|
| 16 |
15 3
|
eqtr4di |
|
| 17 |
16
|
oveqd |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
fveq2 |
|
| 20 |
19 4
|
eqtr4di |
|
| 21 |
20
|
oveqd |
|
| 22 |
18 21
|
eqeqan12d |
|
| 23 |
14 22
|
raleqbidv |
|
| 24 |
14 23
|
raleqbidv |
|
| 25 |
|
fveq2 |
|
| 26 |
25 5
|
eqtr4di |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
fveq2 |
|
| 29 |
28 6
|
eqtr4di |
|
| 30 |
27 29
|
eqeqan12d |
|
| 31 |
24 30
|
anbi12d |
|
| 32 |
13 31
|
rabeqbidv |
|
| 33 |
|
ovex |
|
| 34 |
33
|
rabex |
|
| 35 |
32 7 34
|
ovmpoa |
|
| 36 |
35
|
eleq2d |
|
| 37 |
2
|
fvexi |
|
| 38 |
1
|
fvexi |
|
| 39 |
37 38
|
elmap |
|
| 40 |
39
|
anbi1i |
|
| 41 |
|
fveq1 |
|
| 42 |
|
fveq1 |
|
| 43 |
|
fveq1 |
|
| 44 |
42 43
|
oveq12d |
|
| 45 |
41 44
|
eqeq12d |
|
| 46 |
45
|
2ralbidv |
|
| 47 |
|
fveq1 |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
46 48
|
anbi12d |
|
| 50 |
49
|
elrab |
|
| 51 |
|
3anass |
|
| 52 |
40 50 51
|
3bitr4i |
|
| 53 |
36 52
|
bitrdi |
|
| 54 |
8 53
|
biadanii |
|