Metamath Proof Explorer


Theorem ismir

Description: Property of the image by the point inversion function. Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirfv.b φBP
ismir.1 φCP
ismir.2 φA-˙C=A-˙B
ismir.3 φACIB
Assertion ismir φC=MB

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirfv.b φBP
10 ismir.1 φCP
11 ismir.2 φA-˙C=A-˙B
12 ismir.3 φACIB
13 1 2 3 4 5 6 7 8 9 mirfv φMB=ιzP|A-˙z=A-˙BAzIB
14 1 2 3 6 9 7 mirreu3 φ∃!zPA-˙z=A-˙BAzIB
15 oveq2 z=CA-˙z=A-˙C
16 15 eqeq1d z=CA-˙z=A-˙BA-˙C=A-˙B
17 oveq1 z=CzIB=CIB
18 17 eleq2d z=CAzIBACIB
19 16 18 anbi12d z=CA-˙z=A-˙BAzIBA-˙C=A-˙BACIB
20 19 riota2 CP∃!zPA-˙z=A-˙BAzIBA-˙C=A-˙BACIBιzP|A-˙z=A-˙BAzIB=C
21 10 14 20 syl2anc φA-˙C=A-˙BACIBιzP|A-˙z=A-˙BAzIB=C
22 11 12 21 mpbi2and φιzP|A-˙z=A-˙BAzIB=C
23 13 22 eqtr2d φC=MB