| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismndd.b |
|
| 2 |
|
ismndd.p |
|
| 3 |
|
ismndd.c |
|
| 4 |
|
ismndd.a |
|
| 5 |
|
ismndd.z |
|
| 6 |
|
ismndd.i |
|
| 7 |
|
ismndd.j |
|
| 8 |
3
|
3expb |
|
| 9 |
|
simpll |
|
| 10 |
|
simplrl |
|
| 11 |
|
simplrr |
|
| 12 |
|
simpr |
|
| 13 |
9 10 11 12 4
|
syl13anc |
|
| 14 |
13
|
ralrimiva |
|
| 15 |
8 14
|
jca |
|
| 16 |
15
|
ralrimivva |
|
| 17 |
2
|
oveqd |
|
| 18 |
17 1
|
eleq12d |
|
| 19 |
|
eqidd |
|
| 20 |
2 17 19
|
oveq123d |
|
| 21 |
|
eqidd |
|
| 22 |
2
|
oveqd |
|
| 23 |
2 21 22
|
oveq123d |
|
| 24 |
20 23
|
eqeq12d |
|
| 25 |
1 24
|
raleqbidv |
|
| 26 |
18 25
|
anbi12d |
|
| 27 |
1 26
|
raleqbidv |
|
| 28 |
1 27
|
raleqbidv |
|
| 29 |
16 28
|
mpbid |
|
| 30 |
5 1
|
eleqtrd |
|
| 31 |
1
|
eleq2d |
|
| 32 |
31
|
biimpar |
|
| 33 |
2
|
adantr |
|
| 34 |
33
|
oveqd |
|
| 35 |
34 6
|
eqtr3d |
|
| 36 |
33
|
oveqd |
|
| 37 |
36 7
|
eqtr3d |
|
| 38 |
35 37
|
jca |
|
| 39 |
32 38
|
syldan |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
oveq1 |
|
| 42 |
41
|
eqeq1d |
|
| 43 |
42
|
ovanraleqv |
|
| 44 |
43
|
rspcev |
|
| 45 |
30 40 44
|
syl2anc |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
46 47
|
ismnd |
|
| 49 |
29 45 48
|
sylanbrc |
|