Step |
Hyp |
Ref |
Expression |
1 |
|
ismndd.b |
|
2 |
|
ismndd.p |
|
3 |
|
ismndd.c |
|
4 |
|
ismndd.a |
|
5 |
|
ismndd.z |
|
6 |
|
ismndd.i |
|
7 |
|
ismndd.j |
|
8 |
3
|
3expb |
|
9 |
|
simpll |
|
10 |
|
simplrl |
|
11 |
|
simplrr |
|
12 |
|
simpr |
|
13 |
9 10 11 12 4
|
syl13anc |
|
14 |
13
|
ralrimiva |
|
15 |
8 14
|
jca |
|
16 |
15
|
ralrimivva |
|
17 |
2
|
oveqd |
|
18 |
17 1
|
eleq12d |
|
19 |
|
eqidd |
|
20 |
2 17 19
|
oveq123d |
|
21 |
|
eqidd |
|
22 |
2
|
oveqd |
|
23 |
2 21 22
|
oveq123d |
|
24 |
20 23
|
eqeq12d |
|
25 |
1 24
|
raleqbidv |
|
26 |
18 25
|
anbi12d |
|
27 |
1 26
|
raleqbidv |
|
28 |
1 27
|
raleqbidv |
|
29 |
16 28
|
mpbid |
|
30 |
5 1
|
eleqtrd |
|
31 |
1
|
eleq2d |
|
32 |
31
|
biimpar |
|
33 |
2
|
adantr |
|
34 |
33
|
oveqd |
|
35 |
34 6
|
eqtr3d |
|
36 |
33
|
oveqd |
|
37 |
36 7
|
eqtr3d |
|
38 |
35 37
|
jca |
|
39 |
32 38
|
syldan |
|
40 |
39
|
ralrimiva |
|
41 |
|
oveq1 |
|
42 |
41
|
eqeq1d |
|
43 |
42
|
ovanraleqv |
|
44 |
43
|
rspcev |
|
45 |
30 40 44
|
syl2anc |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
46 47
|
ismnd |
|
49 |
29 45 48
|
sylanbrc |
|