Metamath Proof Explorer


Theorem ismndo

Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ismndo.1 X = dom dom G
Assertion ismndo G A G MndOp G SemiGrp x X y X x G y = y y G x = y

Proof

Step Hyp Ref Expression
1 ismndo.1 X = dom dom G
2 df-mndo MndOp = SemiGrp ExId
3 2 eleq2i G MndOp G SemiGrp ExId
4 elin G SemiGrp ExId G SemiGrp G ExId
5 1 isexid G A G ExId x X y X x G y = y y G x = y
6 5 anbi2d G A G SemiGrp G ExId G SemiGrp x X y X x G y = y y G x = y
7 4 6 syl5bb G A G SemiGrp ExId G SemiGrp x X y X x G y = y y G x = y
8 3 7 syl5bb G A G MndOp G SemiGrp x X y X x G y = y y G x = y