Metamath Proof Explorer


Theorem ismon1p

Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pval.p P=Poly1R
uc1pval.b B=BaseP
uc1pval.z 0˙=0P
uc1pval.d D=deg1R
mon1pval.m M=Monic1pR
mon1pval.o 1˙=1R
Assertion ismon1p FMFBF0˙coe1FDF=1˙

Proof

Step Hyp Ref Expression
1 uc1pval.p P=Poly1R
2 uc1pval.b B=BaseP
3 uc1pval.z 0˙=0P
4 uc1pval.d D=deg1R
5 mon1pval.m M=Monic1pR
6 mon1pval.o 1˙=1R
7 neeq1 f=Ff0˙F0˙
8 fveq2 f=Fcoe1f=coe1F
9 fveq2 f=FDf=DF
10 8 9 fveq12d f=Fcoe1fDf=coe1FDF
11 10 eqeq1d f=Fcoe1fDf=1˙coe1FDF=1˙
12 7 11 anbi12d f=Ff0˙coe1fDf=1˙F0˙coe1FDF=1˙
13 1 2 3 4 5 6 mon1pval M=fB|f0˙coe1fDf=1˙
14 12 13 elrab2 FMFBF0˙coe1FDF=1˙
15 3anass FBF0˙coe1FDF=1˙FBF0˙coe1FDF=1˙
16 14 15 bitr4i FMFBF0˙coe1FDF=1˙