Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
The division algorithm for univariate polynomials
ismon1p
Next ⟩
uc1pcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismon1p
Description:
Being a monic polynomial.
(Contributed by
Stefan O'Rear
, 28-Mar-2015)
Ref
Expression
Hypotheses
uc1pval.p
⊢
P
=
Poly
1
⁡
R
uc1pval.b
⊢
B
=
Base
P
uc1pval.z
⊢
0
˙
=
0
P
uc1pval.d
⊢
D
=
deg
1
⁡
R
mon1pval.m
⊢
M
=
Monic
1p
⁡
R
mon1pval.o
⊢
1
˙
=
1
R
Assertion
ismon1p
⊢
F
∈
M
↔
F
∈
B
∧
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
Proof
Step
Hyp
Ref
Expression
1
uc1pval.p
⊢
P
=
Poly
1
⁡
R
2
uc1pval.b
⊢
B
=
Base
P
3
uc1pval.z
⊢
0
˙
=
0
P
4
uc1pval.d
⊢
D
=
deg
1
⁡
R
5
mon1pval.m
⊢
M
=
Monic
1p
⁡
R
6
mon1pval.o
⊢
1
˙
=
1
R
7
neeq1
⊢
f
=
F
→
f
≠
0
˙
↔
F
≠
0
˙
8
fveq2
⊢
f
=
F
→
coe
1
⁡
f
=
coe
1
⁡
F
9
fveq2
⊢
f
=
F
→
D
⁡
f
=
D
⁡
F
10
8
9
fveq12d
⊢
f
=
F
→
coe
1
⁡
f
⁡
D
⁡
f
=
coe
1
⁡
F
⁡
D
⁡
F
11
10
eqeq1d
⊢
f
=
F
→
coe
1
⁡
f
⁡
D
⁡
f
=
1
˙
↔
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
12
7
11
anbi12d
⊢
f
=
F
→
f
≠
0
˙
∧
coe
1
⁡
f
⁡
D
⁡
f
=
1
˙
↔
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
13
1
2
3
4
5
6
mon1pval
⊢
M
=
f
∈
B
|
f
≠
0
˙
∧
coe
1
⁡
f
⁡
D
⁡
f
=
1
˙
14
12
13
elrab2
⊢
F
∈
M
↔
F
∈
B
∧
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
15
3anass
⊢
F
∈
B
∧
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
↔
F
∈
B
∧
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙
16
14
15
bitr4i
⊢
F
∈
M
↔
F
∈
B
∧
F
≠
0
˙
∧
coe
1
⁡
F
⁡
D
⁡
F
=
1
˙