Metamath Proof Explorer


Theorem ismot

Description: Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
Assertion ismot G V F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 1 1 2 2 isismt G V G V F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b
4 3 anidms G V F G Ismt G F : P 1-1 onto P a P b P F a - ˙ F b = a - ˙ b