Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Motions
ismot
Metamath Proof Explorer
Description: Property of being an isometry mapping to the same space. In geometry,
this is also called a motion. (Contributed by Thierry Arnoux , 15-Dec-2019)
Ref
Expression
Hypotheses
ismot.p
⊢ P = Base G
ismot.m
⊢ - ˙ = dist ⁡ G
Assertion
ismot
⊢ G ∈ V → F ∈ G Ismt G ↔ F : P ⟶ 1-1 onto P ∧ ∀ a ∈ P ∀ b ∈ P F ⁡ a - ˙ F ⁡ b = a - ˙ b
Proof
Step
Hyp
Ref
Expression
1
ismot.p
⊢ P = Base G
2
ismot.m
⊢ - ˙ = dist ⁡ G
3
1 1 2 2
isismt
⊢ G ∈ V ∧ G ∈ V → F ∈ G Ismt G ↔ F : P ⟶ 1-1 onto P ∧ ∀ a ∈ P ∀ b ∈ P F ⁡ a - ˙ F ⁡ b = a - ˙ b
4
3
anidms
⊢ G ∈ V → F ∈ G Ismt G ↔ F : P ⟶ 1-1 onto P ∧ ∀ a ∈ P ∀ b ∈ P F ⁡ a - ˙ F ⁡ b = a - ˙ b