Metamath Proof Explorer


Theorem ismred

Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ismred.ss φ C 𝒫 X
ismred.ba φ X C
ismred.in φ s C s s C
Assertion ismred φ C Moore X

Proof

Step Hyp Ref Expression
1 ismred.ss φ C 𝒫 X
2 ismred.ba φ X C
3 ismred.in φ s C s s C
4 velpw s 𝒫 C s C
5 3 3expia φ s C s s C
6 4 5 sylan2b φ s 𝒫 C s s C
7 6 ralrimiva φ s 𝒫 C s s C
8 ismre C Moore X C 𝒫 X X C s 𝒫 C s s C
9 1 2 7 8 syl3anbrc φ C Moore X