Metamath Proof Explorer


Theorem ismred2

Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypotheses ismred2.ss φ C 𝒫 X
ismred2.in φ s C X s C
Assertion ismred2 φ C Moore X

Proof

Step Hyp Ref Expression
1 ismred2.ss φ C 𝒫 X
2 ismred2.in φ s C X s C
3 eqid =
4 rint0 = X = X
5 3 4 ax-mp X = X
6 0ss C
7 0ex V
8 sseq1 s = s C C
9 8 anbi2d s = φ s C φ C
10 inteq s = s =
11 10 ineq2d s = X s = X
12 11 eleq1d s = X s C X C
13 9 12 imbi12d s = φ s C X s C φ C X C
14 7 13 2 vtocl φ C X C
15 6 14 mpan2 φ X C
16 5 15 eqeltrrid φ X C
17 simp2 φ s C s s C
18 1 3ad2ant1 φ s C s C 𝒫 X
19 17 18 sstrd φ s C s s 𝒫 X
20 simp3 φ s C s s
21 rintn0 s 𝒫 X s X s = s
22 19 20 21 syl2anc φ s C s X s = s
23 2 3adant3 φ s C s X s C
24 22 23 eqeltrrd φ s C s s C
25 1 16 24 ismred φ C Moore X