Metamath Proof Explorer


Theorem ismri

Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri.1 N = mrCls A
ismri.2 I = mrInd A
Assertion ismri A Moore X S I S X x S ¬ x N S x

Proof

Step Hyp Ref Expression
1 ismri.1 N = mrCls A
2 ismri.2 I = mrInd A
3 1 2 mrisval A Moore X I = s 𝒫 X | x s ¬ x N s x
4 3 eleq2d A Moore X S I S s 𝒫 X | x s ¬ x N s x
5 difeq1 s = S s x = S x
6 5 fveq2d s = S N s x = N S x
7 6 eleq2d s = S x N s x x N S x
8 7 notbid s = S ¬ x N s x ¬ x N S x
9 8 raleqbi1dv s = S x s ¬ x N s x x S ¬ x N S x
10 9 elrab S s 𝒫 X | x s ¬ x N s x S 𝒫 X x S ¬ x N S x
11 4 10 bitrdi A Moore X S I S 𝒫 X x S ¬ x N S x
12 elfvex A Moore X X V
13 elpw2g X V S 𝒫 X S X
14 12 13 syl A Moore X S 𝒫 X S X
15 14 anbi1d A Moore X S 𝒫 X x S ¬ x N S x S X x S ¬ x N S x
16 11 15 bitrd A Moore X S I S X x S ¬ x N S x