Metamath Proof Explorer


Theorem ismri2d

Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1 N = mrCls A
ismri2.2 I = mrInd A
ismri2d.3 φ A Moore X
ismri2d.4 φ S X
Assertion ismri2d φ S I x S ¬ x N S x

Proof

Step Hyp Ref Expression
1 ismri2.1 N = mrCls A
2 ismri2.2 I = mrInd A
3 ismri2d.3 φ A Moore X
4 ismri2d.4 φ S X
5 1 2 ismri2 A Moore X S X S I x S ¬ x N S x
6 3 4 5 syl2anc φ S I x S ¬ x N S x