Metamath Proof Explorer


Theorem ismri2dad

Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2dad.1 N = mrCls A
ismri2dad.2 I = mrInd A
ismri2dad.3 φ A Moore X
ismri2dad.4 φ S I
ismri2dad.5 φ Y S
Assertion ismri2dad φ ¬ Y N S Y

Proof

Step Hyp Ref Expression
1 ismri2dad.1 N = mrCls A
2 ismri2dad.2 I = mrInd A
3 ismri2dad.3 φ A Moore X
4 ismri2dad.4 φ S I
5 ismri2dad.5 φ Y S
6 2 3 4 mrissd φ S X
7 1 2 3 6 ismri2d φ S I x S ¬ x N S x
8 4 7 mpbid φ x S ¬ x N S x
9 simpr φ x = Y x = Y
10 9 sneqd φ x = Y x = Y
11 10 difeq2d φ x = Y S x = S Y
12 11 fveq2d φ x = Y N S x = N S Y
13 9 12 eleq12d φ x = Y x N S x Y N S Y
14 13 notbid φ x = Y ¬ x N S x ¬ Y N S Y
15 5 14 rspcdv φ x S ¬ x N S x ¬ Y N S Y
16 8 15 mpd φ ¬ Y N S Y