Metamath Proof Explorer


Theorem ismri2dd

Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1 N = mrCls A
ismri2.2 I = mrInd A
ismri2d.3 φ A Moore X
ismri2d.4 φ S X
ismri2dd.5 φ x S ¬ x N S x
Assertion ismri2dd φ S I

Proof

Step Hyp Ref Expression
1 ismri2.1 N = mrCls A
2 ismri2.2 I = mrInd A
3 ismri2d.3 φ A Moore X
4 ismri2d.4 φ S X
5 ismri2dd.5 φ x S ¬ x N S x
6 1 2 3 4 ismri2d φ S I x S ¬ x N S x
7 5 6 mpbird φ S I