Metamath Proof Explorer


Theorem isms2

Description: Express the predicate " <. X , D >. is a metric space" with underlying set X and distance function D . (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses isms.j J = TopOpen K
isms.x X = Base K
isms.d D = dist K X × X
Assertion isms2 K MetSp D Met X J = MetOpen D

Proof

Step Hyp Ref Expression
1 isms.j J = TopOpen K
2 isms.x X = Base K
3 isms.d D = dist K X × X
4 1 2 3 isxms2 K ∞MetSp D ∞Met X J = MetOpen D
5 4 anbi1i K ∞MetSp D Met X D ∞Met X J = MetOpen D D Met X
6 1 2 3 isms K MetSp K ∞MetSp D Met X
7 metxmet D Met X D ∞Met X
8 7 pm4.71ri D Met X D ∞Met X D Met X
9 8 anbi1i D Met X J = MetOpen D D ∞Met X D Met X J = MetOpen D
10 an32 D ∞Met X D Met X J = MetOpen D D ∞Met X J = MetOpen D D Met X
11 9 10 bitri D Met X J = MetOpen D D ∞Met X J = MetOpen D D Met X
12 5 6 11 3bitr4i K MetSp D Met X J = MetOpen D