Metamath Proof Explorer


Theorem ismtybnd

Description: Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 19-Jan-2014)

Ref Expression
Assertion ismtybnd M ∞Met X N ∞Met Y F M Ismty N M Bnd X N Bnd Y

Proof

Step Hyp Ref Expression
1 ismtybndlem N ∞Met Y F M Ismty N M Bnd X N Bnd Y
2 1 3adant1 M ∞Met X N ∞Met Y F M Ismty N M Bnd X N Bnd Y
3 ismtycnv M ∞Met X N ∞Met Y F M Ismty N F -1 N Ismty M
4 3 3impia M ∞Met X N ∞Met Y F M Ismty N F -1 N Ismty M
5 ismtybndlem M ∞Met X F -1 N Ismty M N Bnd Y M Bnd X
6 5 3adant2 M ∞Met X N ∞Met Y F -1 N Ismty M N Bnd Y M Bnd X
7 4 6 syld3an3 M ∞Met X N ∞Met Y F M Ismty N N Bnd Y M Bnd X
8 2 7 impbid M ∞Met X N ∞Met Y F M Ismty N M Bnd X N Bnd Y