Metamath Proof Explorer


Theorem ismtyhmeo

Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses ismtyhmeo.1 J = MetOpen M
ismtyhmeo.2 K = MetOpen N
Assertion ismtyhmeo M ∞Met X N ∞Met Y M Ismty N J Homeo K

Proof

Step Hyp Ref Expression
1 ismtyhmeo.1 J = MetOpen M
2 ismtyhmeo.2 K = MetOpen N
3 simpll M ∞Met X N ∞Met Y f M Ismty N M ∞Met X
4 simplr M ∞Met X N ∞Met Y f M Ismty N N ∞Met Y
5 simpr M ∞Met X N ∞Met Y f M Ismty N f M Ismty N
6 1 2 3 4 5 ismtyhmeolem M ∞Met X N ∞Met Y f M Ismty N f J Cn K
7 ismtycnv M ∞Met X N ∞Met Y f M Ismty N f -1 N Ismty M
8 7 imp M ∞Met X N ∞Met Y f M Ismty N f -1 N Ismty M
9 2 1 4 3 8 ismtyhmeolem M ∞Met X N ∞Met Y f M Ismty N f -1 K Cn J
10 ishmeo f J Homeo K f J Cn K f -1 K Cn J
11 6 9 10 sylanbrc M ∞Met X N ∞Met Y f M Ismty N f J Homeo K
12 11 ex M ∞Met X N ∞Met Y f M Ismty N f J Homeo K
13 12 ssrdv M ∞Met X N ∞Met Y M Ismty N J Homeo K