Step |
Hyp |
Ref |
Expression |
1 |
|
ismtyres.2 |
|
2 |
|
ismtyres.3 |
|
3 |
|
ismtyres.4 |
|
4 |
|
isismty |
|
5 |
4
|
simprbda |
|
6 |
5
|
adantrr |
|
7 |
|
f1of1 |
|
8 |
6 7
|
syl |
|
9 |
|
simprr |
|
10 |
|
f1ores |
|
11 |
8 9 10
|
syl2anc |
|
12 |
4
|
biimpa |
|
13 |
12
|
adantrr |
|
14 |
|
ssel |
|
15 |
|
ssel |
|
16 |
14 15
|
anim12d |
|
17 |
16
|
imp |
|
18 |
|
oveq1 |
|
19 |
|
fveq2 |
|
20 |
19
|
oveq1d |
|
21 |
18 20
|
eqeq12d |
|
22 |
|
oveq2 |
|
23 |
|
fveq2 |
|
24 |
23
|
oveq2d |
|
25 |
22 24
|
eqeq12d |
|
26 |
21 25
|
rspc2v |
|
27 |
17 26
|
syl |
|
28 |
27
|
imp |
|
29 |
28
|
an32s |
|
30 |
29
|
adantlrl |
|
31 |
30
|
adantlll |
|
32 |
2
|
oveqi |
|
33 |
|
ovres |
|
34 |
32 33
|
syl5eq |
|
35 |
34
|
adantl |
|
36 |
|
fvres |
|
37 |
36
|
ad2antrl |
|
38 |
|
fvres |
|
39 |
38
|
ad2antll |
|
40 |
37 39
|
oveq12d |
|
41 |
3
|
oveqi |
|
42 |
|
f1ofun |
|
43 |
42
|
adantl |
|
44 |
|
f1odm |
|
45 |
44
|
sseq2d |
|
46 |
45
|
biimparc |
|
47 |
|
funfvima2 |
|
48 |
43 46 47
|
syl2anc |
|
49 |
48
|
imp |
|
50 |
49 1
|
eleqtrrdi |
|
51 |
50
|
adantrr |
|
52 |
|
funfvima2 |
|
53 |
43 46 52
|
syl2anc |
|
54 |
53
|
imp |
|
55 |
54 1
|
eleqtrrdi |
|
56 |
55
|
adantrl |
|
57 |
51 56
|
ovresd |
|
58 |
41 57
|
syl5eq |
|
59 |
40 58
|
eqtrd |
|
60 |
59
|
adantlrr |
|
61 |
60
|
adantlll |
|
62 |
31 35 61
|
3eqtr4d |
|
63 |
62
|
ralrimivva |
|
64 |
63
|
adantlrl |
|
65 |
13 64
|
mpdan |
|
66 |
|
xmetres2 |
|
67 |
2 66
|
eqeltrid |
|
68 |
67
|
ad2ant2rl |
|
69 |
|
simplr |
|
70 |
|
imassrn |
|
71 |
1 70
|
eqsstri |
|
72 |
|
f1ofo |
|
73 |
|
forn |
|
74 |
6 72 73
|
3syl |
|
75 |
71 74
|
sseqtrid |
|
76 |
|
xmetres2 |
|
77 |
69 75 76
|
syl2anc |
|
78 |
3 77
|
eqeltrid |
|
79 |
1
|
fveq2i |
|
80 |
78 79
|
eleqtrdi |
|
81 |
|
isismty |
|
82 |
68 80 81
|
syl2anc |
|
83 |
11 65 82
|
mpbir2and |
|