Metamath Proof Explorer


Theorem ismtyres

Description: A restriction of an isometry is an isometry. The condition A C_ X is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses ismtyres.2 B = F A
ismtyres.3 S = M A × A
ismtyres.4 T = N B × B
Assertion ismtyres M ∞Met X N ∞Met Y F M Ismty N A X F A S Ismty T

Proof

Step Hyp Ref Expression
1 ismtyres.2 B = F A
2 ismtyres.3 S = M A × A
3 ismtyres.4 T = N B × B
4 isismty M ∞Met X N ∞Met Y F M Ismty N F : X 1-1 onto Y x X y X x M y = F x N F y
5 4 simprbda M ∞Met X N ∞Met Y F M Ismty N F : X 1-1 onto Y
6 5 adantrr M ∞Met X N ∞Met Y F M Ismty N A X F : X 1-1 onto Y
7 f1of1 F : X 1-1 onto Y F : X 1-1 Y
8 6 7 syl M ∞Met X N ∞Met Y F M Ismty N A X F : X 1-1 Y
9 simprr M ∞Met X N ∞Met Y F M Ismty N A X A X
10 f1ores F : X 1-1 Y A X F A : A 1-1 onto F A
11 8 9 10 syl2anc M ∞Met X N ∞Met Y F M Ismty N A X F A : A 1-1 onto F A
12 4 biimpa M ∞Met X N ∞Met Y F M Ismty N F : X 1-1 onto Y x X y X x M y = F x N F y
13 12 adantrr M ∞Met X N ∞Met Y F M Ismty N A X F : X 1-1 onto Y x X y X x M y = F x N F y
14 ssel A X u A u X
15 ssel A X v A v X
16 14 15 anim12d A X u A v A u X v X
17 16 imp A X u A v A u X v X
18 oveq1 x = u x M y = u M y
19 fveq2 x = u F x = F u
20 19 oveq1d x = u F x N F y = F u N F y
21 18 20 eqeq12d x = u x M y = F x N F y u M y = F u N F y
22 oveq2 y = v u M y = u M v
23 fveq2 y = v F y = F v
24 23 oveq2d y = v F u N F y = F u N F v
25 22 24 eqeq12d y = v u M y = F u N F y u M v = F u N F v
26 21 25 rspc2v u X v X x X y X x M y = F x N F y u M v = F u N F v
27 17 26 syl A X u A v A x X y X x M y = F x N F y u M v = F u N F v
28 27 imp A X u A v A x X y X x M y = F x N F y u M v = F u N F v
29 28 an32s A X x X y X x M y = F x N F y u A v A u M v = F u N F v
30 29 adantlrl A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u M v = F u N F v
31 30 adantlll M ∞Met X N ∞Met Y A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u M v = F u N F v
32 2 oveqi u S v = u M A × A v
33 ovres u A v A u M A × A v = u M v
34 32 33 syl5eq u A v A u S v = u M v
35 34 adantl M ∞Met X N ∞Met Y A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u S v = u M v
36 fvres u A F A u = F u
37 36 ad2antrl A X F : X 1-1 onto Y u A v A F A u = F u
38 fvres v A F A v = F v
39 38 ad2antll A X F : X 1-1 onto Y u A v A F A v = F v
40 37 39 oveq12d A X F : X 1-1 onto Y u A v A F A u T F A v = F u T F v
41 3 oveqi F u T F v = F u N B × B F v
42 f1ofun F : X 1-1 onto Y Fun F
43 42 adantl A X F : X 1-1 onto Y Fun F
44 f1odm F : X 1-1 onto Y dom F = X
45 44 sseq2d F : X 1-1 onto Y A dom F A X
46 45 biimparc A X F : X 1-1 onto Y A dom F
47 funfvima2 Fun F A dom F u A F u F A
48 43 46 47 syl2anc A X F : X 1-1 onto Y u A F u F A
49 48 imp A X F : X 1-1 onto Y u A F u F A
50 49 1 eleqtrrdi A X F : X 1-1 onto Y u A F u B
51 50 adantrr A X F : X 1-1 onto Y u A v A F u B
52 funfvima2 Fun F A dom F v A F v F A
53 43 46 52 syl2anc A X F : X 1-1 onto Y v A F v F A
54 53 imp A X F : X 1-1 onto Y v A F v F A
55 54 1 eleqtrrdi A X F : X 1-1 onto Y v A F v B
56 55 adantrl A X F : X 1-1 onto Y u A v A F v B
57 51 56 ovresd A X F : X 1-1 onto Y u A v A F u N B × B F v = F u N F v
58 41 57 syl5eq A X F : X 1-1 onto Y u A v A F u T F v = F u N F v
59 40 58 eqtrd A X F : X 1-1 onto Y u A v A F A u T F A v = F u N F v
60 59 adantlrr A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A F A u T F A v = F u N F v
61 60 adantlll M ∞Met X N ∞Met Y A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A F A u T F A v = F u N F v
62 31 35 61 3eqtr4d M ∞Met X N ∞Met Y A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u S v = F A u T F A v
63 62 ralrimivva M ∞Met X N ∞Met Y A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u S v = F A u T F A v
64 63 adantlrl M ∞Met X N ∞Met Y F M Ismty N A X F : X 1-1 onto Y x X y X x M y = F x N F y u A v A u S v = F A u T F A v
65 13 64 mpdan M ∞Met X N ∞Met Y F M Ismty N A X u A v A u S v = F A u T F A v
66 xmetres2 M ∞Met X A X M A × A ∞Met A
67 2 66 eqeltrid M ∞Met X A X S ∞Met A
68 67 ad2ant2rl M ∞Met X N ∞Met Y F M Ismty N A X S ∞Met A
69 simplr M ∞Met X N ∞Met Y F M Ismty N A X N ∞Met Y
70 imassrn F A ran F
71 1 70 eqsstri B ran F
72 f1ofo F : X 1-1 onto Y F : X onto Y
73 forn F : X onto Y ran F = Y
74 6 72 73 3syl M ∞Met X N ∞Met Y F M Ismty N A X ran F = Y
75 71 74 sseqtrid M ∞Met X N ∞Met Y F M Ismty N A X B Y
76 xmetres2 N ∞Met Y B Y N B × B ∞Met B
77 69 75 76 syl2anc M ∞Met X N ∞Met Y F M Ismty N A X N B × B ∞Met B
78 3 77 eqeltrid M ∞Met X N ∞Met Y F M Ismty N A X T ∞Met B
79 1 fveq2i ∞Met B = ∞Met F A
80 78 79 eleqtrdi M ∞Met X N ∞Met Y F M Ismty N A X T ∞Met F A
81 isismty S ∞Met A T ∞Met F A F A S Ismty T F A : A 1-1 onto F A u A v A u S v = F A u T F A v
82 68 80 81 syl2anc M ∞Met X N ∞Met Y F M Ismty N A X F A S Ismty T F A : A 1-1 onto F A u A v A u S v = F A u T F A v
83 11 65 82 mpbir2and M ∞Met X N ∞Met Y F M Ismty N A X F A S Ismty T