Metamath Proof Explorer


Theorem isnacs

Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F = mrCls C
Assertion isnacs C NoeACS X C ACS X s C g 𝒫 X Fin s = F g

Proof

Step Hyp Ref Expression
1 isnacs.f F = mrCls C
2 elfvex C NoeACS X X V
3 elfvex C ACS X X V
4 3 adantr C ACS X s C g 𝒫 X Fin s = F g X V
5 fveq2 x = X ACS x = ACS X
6 pweq x = X 𝒫 x = 𝒫 X
7 6 ineq1d x = X 𝒫 x Fin = 𝒫 X Fin
8 7 rexeqdv x = X g 𝒫 x Fin s = mrCls c g g 𝒫 X Fin s = mrCls c g
9 8 ralbidv x = X s c g 𝒫 x Fin s = mrCls c g s c g 𝒫 X Fin s = mrCls c g
10 5 9 rabeqbidv x = X c ACS x | s c g 𝒫 x Fin s = mrCls c g = c ACS X | s c g 𝒫 X Fin s = mrCls c g
11 df-nacs NoeACS = x V c ACS x | s c g 𝒫 x Fin s = mrCls c g
12 fvex ACS X V
13 12 rabex c ACS X | s c g 𝒫 X Fin s = mrCls c g V
14 10 11 13 fvmpt X V NoeACS X = c ACS X | s c g 𝒫 X Fin s = mrCls c g
15 14 eleq2d X V C NoeACS X C c ACS X | s c g 𝒫 X Fin s = mrCls c g
16 fveq2 c = C mrCls c = mrCls C
17 16 1 eqtr4di c = C mrCls c = F
18 17 fveq1d c = C mrCls c g = F g
19 18 eqeq2d c = C s = mrCls c g s = F g
20 19 rexbidv c = C g 𝒫 X Fin s = mrCls c g g 𝒫 X Fin s = F g
21 20 raleqbi1dv c = C s c g 𝒫 X Fin s = mrCls c g s C g 𝒫 X Fin s = F g
22 21 elrab C c ACS X | s c g 𝒫 X Fin s = mrCls c g C ACS X s C g 𝒫 X Fin s = F g
23 15 22 bitrdi X V C NoeACS X C ACS X s C g 𝒫 X Fin s = F g
24 2 4 23 pm5.21nii C NoeACS X C ACS X s C g 𝒫 X Fin s = F g