Metamath Proof Explorer


Theorem isnacs2

Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F = mrCls C
Assertion isnacs2 C NoeACS X C ACS X F 𝒫 X Fin = C

Proof

Step Hyp Ref Expression
1 isnacs.f F = mrCls C
2 1 isnacs C NoeACS X C ACS X s C g 𝒫 X Fin s = F g
3 eqcom s = F g F g = s
4 3 rexbii g 𝒫 X Fin s = F g g 𝒫 X Fin F g = s
5 acsmre C ACS X C Moore X
6 1 mrcf C Moore X F : 𝒫 X C
7 ffn F : 𝒫 X C F Fn 𝒫 X
8 5 6 7 3syl C ACS X F Fn 𝒫 X
9 inss1 𝒫 X Fin 𝒫 X
10 fvelimab F Fn 𝒫 X 𝒫 X Fin 𝒫 X s F 𝒫 X Fin g 𝒫 X Fin F g = s
11 8 9 10 sylancl C ACS X s F 𝒫 X Fin g 𝒫 X Fin F g = s
12 4 11 bitr4id C ACS X g 𝒫 X Fin s = F g s F 𝒫 X Fin
13 12 ralbidv C ACS X s C g 𝒫 X Fin s = F g s C s F 𝒫 X Fin
14 dfss3 C F 𝒫 X Fin s C s F 𝒫 X Fin
15 13 14 bitr4di C ACS X s C g 𝒫 X Fin s = F g C F 𝒫 X Fin
16 imassrn F 𝒫 X Fin ran F
17 frn F : 𝒫 X C ran F C
18 5 6 17 3syl C ACS X ran F C
19 16 18 sstrid C ACS X F 𝒫 X Fin C
20 19 biantrurd C ACS X C F 𝒫 X Fin F 𝒫 X Fin C C F 𝒫 X Fin
21 eqss F 𝒫 X Fin = C F 𝒫 X Fin C C F 𝒫 X Fin
22 20 21 bitr4di C ACS X C F 𝒫 X Fin F 𝒫 X Fin = C
23 15 22 bitrd C ACS X s C g 𝒫 X Fin s = F g F 𝒫 X Fin = C
24 23 pm5.32i C ACS X s C g 𝒫 X Fin s = F g C ACS X F 𝒫 X Fin = C
25 2 24 bitri C NoeACS X C ACS X F 𝒫 X Fin = C