Step |
Hyp |
Ref |
Expression |
1 |
|
nacsacs |
|
2 |
1
|
acsmred |
|
3 |
|
simpll |
|
4 |
1
|
ad2antrr |
|
5 |
|
elpwi |
|
6 |
5
|
ad2antlr |
|
7 |
|
simpr |
|
8 |
|
acsdrsel |
|
9 |
4 6 7 8
|
syl3anc |
|
10 |
|
eqid |
|
11 |
10
|
nacsfg |
|
12 |
3 9 11
|
syl2anc |
|
13 |
10
|
mrefg2 |
|
14 |
2 13
|
syl |
|
15 |
14
|
ad2antrr |
|
16 |
12 15
|
mpbid |
|
17 |
|
elfpw |
|
18 |
|
fissuni |
|
19 |
17 18
|
sylbi |
|
20 |
|
elfpw |
|
21 |
|
ipodrsfi |
|
22 |
21
|
3expb |
|
23 |
20 22
|
sylan2b |
|
24 |
|
sstr |
|
25 |
24
|
ancoms |
|
26 |
|
simpr |
|
27 |
2
|
ad2antrr |
|
28 |
|
simprr |
|
29 |
5
|
ad2antlr |
|
30 |
|
simprl |
|
31 |
29 30
|
sseldd |
|
32 |
10
|
mrcsscl |
|
33 |
27 28 31 32
|
syl3anc |
|
34 |
33
|
adantr |
|
35 |
26 34
|
eqsstrd |
|
36 |
|
simplrl |
|
37 |
|
elssuni |
|
38 |
36 37
|
syl |
|
39 |
35 38
|
eqssd |
|
40 |
39 36
|
eqeltrd |
|
41 |
40
|
ex |
|
42 |
41
|
expr |
|
43 |
25 42
|
syl5 |
|
44 |
43
|
expd |
|
45 |
44
|
rexlimdva |
|
46 |
23 45
|
syl5 |
|
47 |
46
|
expdimp |
|
48 |
47
|
rexlimdv |
|
49 |
19 48
|
syl5 |
|
50 |
49
|
rexlimdv |
|
51 |
16 50
|
mpd |
|
52 |
51
|
ex |
|
53 |
52
|
ralrimiva |
|
54 |
2 53
|
jca |
|
55 |
|
simpl |
|
56 |
5
|
adantl |
|
57 |
56
|
sseld |
|
58 |
57
|
imim2d |
|
59 |
58
|
ralimdva |
|
60 |
59
|
imp |
|
61 |
|
isacs3 |
|
62 |
55 60 61
|
sylanbrc |
|
63 |
10
|
mrcid |
|
64 |
63
|
adantlr |
|
65 |
62
|
adantr |
|
66 |
|
mress |
|
67 |
66
|
adantlr |
|
68 |
65 10 67
|
acsficld |
|
69 |
64 68
|
eqtr3d |
|
70 |
10
|
mrcf |
|
71 |
70
|
ffnd |
|
72 |
71
|
adantr |
|
73 |
10
|
mrcss |
|
74 |
73
|
3expb |
|
75 |
74
|
adantlr |
|
76 |
|
vex |
|
77 |
|
fpwipodrs |
|
78 |
76 77
|
mp1i |
|
79 |
|
inss1 |
|
80 |
66
|
sspwd |
|
81 |
79 80
|
sstrid |
|
82 |
|
fvex |
|
83 |
|
imaexg |
|
84 |
82 83
|
ax-mp |
|
85 |
84
|
a1i |
|
86 |
72 75 78 81 85
|
ipodrsima |
|
87 |
86
|
adantlr |
|
88 |
|
imassrn |
|
89 |
70
|
frnd |
|
90 |
88 89
|
sstrid |
|
91 |
90
|
adantr |
|
92 |
84
|
elpw |
|
93 |
91 92
|
sylibr |
|
94 |
93
|
adantlr |
|
95 |
|
simplr |
|
96 |
|
fveq2 |
|
97 |
96
|
eleq1d |
|
98 |
|
unieq |
|
99 |
|
id |
|
100 |
98 99
|
eleq12d |
|
101 |
97 100
|
imbi12d |
|
102 |
101
|
rspcva |
|
103 |
94 95 102
|
syl2anc |
|
104 |
87 103
|
mpd |
|
105 |
69 104
|
eqeltrd |
|
106 |
|
fvelimab |
|
107 |
72 81 106
|
syl2anc |
|
108 |
107
|
adantlr |
|
109 |
105 108
|
mpbid |
|
110 |
|
eqcom |
|
111 |
110
|
rexbii |
|
112 |
109 111
|
sylibr |
|
113 |
10
|
mrefg2 |
|
114 |
113
|
ad2antrr |
|
115 |
112 114
|
mpbird |
|
116 |
115
|
ralrimiva |
|
117 |
10
|
isnacs |
|
118 |
62 116 117
|
sylanbrc |
|
119 |
54 118
|
impbii |
|