Step |
Hyp |
Ref |
Expression |
1 |
|
natfval.1 |
|
2 |
|
natfval.b |
|
3 |
|
natfval.h |
|
4 |
|
natfval.j |
|
5 |
|
natfval.o |
|
6 |
|
isnat.f |
|
7 |
|
isnat.g |
|
8 |
1 2 3 4 5
|
natfval |
|
9 |
8
|
a1i |
|
10 |
|
fvexd |
|
11 |
|
simprl |
|
12 |
11
|
fveq2d |
|
13 |
|
relfunc |
|
14 |
|
brrelex12 |
|
15 |
13 6 14
|
sylancr |
|
16 |
|
op1stg |
|
17 |
15 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
12 18
|
eqtrd |
|
20 |
|
fvexd |
|
21 |
|
simplrr |
|
22 |
21
|
fveq2d |
|
23 |
|
brrelex12 |
|
24 |
13 7 23
|
sylancr |
|
25 |
|
op1stg |
|
26 |
24 25
|
syl |
|
27 |
26
|
ad2antrr |
|
28 |
22 27
|
eqtrd |
|
29 |
|
simplr |
|
30 |
29
|
fveq1d |
|
31 |
|
simpr |
|
32 |
31
|
fveq1d |
|
33 |
30 32
|
oveq12d |
|
34 |
33
|
ixpeq2dv |
|
35 |
29
|
fveq1d |
|
36 |
30 35
|
opeq12d |
|
37 |
31
|
fveq1d |
|
38 |
36 37
|
oveq12d |
|
39 |
|
eqidd |
|
40 |
11
|
ad2antrr |
|
41 |
40
|
fveq2d |
|
42 |
|
op2ndg |
|
43 |
15 42
|
syl |
|
44 |
43
|
ad3antrrr |
|
45 |
41 44
|
eqtrd |
|
46 |
45
|
oveqd |
|
47 |
46
|
fveq1d |
|
48 |
38 39 47
|
oveq123d |
|
49 |
30 32
|
opeq12d |
|
50 |
49 37
|
oveq12d |
|
51 |
21
|
adantr |
|
52 |
51
|
fveq2d |
|
53 |
|
op2ndg |
|
54 |
24 53
|
syl |
|
55 |
54
|
ad3antrrr |
|
56 |
52 55
|
eqtrd |
|
57 |
56
|
oveqd |
|
58 |
57
|
fveq1d |
|
59 |
|
eqidd |
|
60 |
50 58 59
|
oveq123d |
|
61 |
48 60
|
eqeq12d |
|
62 |
61
|
ralbidv |
|
63 |
62
|
2ralbidv |
|
64 |
34 63
|
rabeqbidv |
|
65 |
20 28 64
|
csbied2 |
|
66 |
10 19 65
|
csbied2 |
|
67 |
|
df-br |
|
68 |
6 67
|
sylib |
|
69 |
|
df-br |
|
70 |
7 69
|
sylib |
|
71 |
|
ovex |
|
72 |
71
|
rgenw |
|
73 |
|
ixpexg |
|
74 |
72 73
|
ax-mp |
|
75 |
74
|
rabex |
|
76 |
75
|
a1i |
|
77 |
9 66 68 70 76
|
ovmpod |
|
78 |
77
|
eleq2d |
|
79 |
|
fveq1 |
|
80 |
79
|
oveq1d |
|
81 |
|
fveq1 |
|
82 |
81
|
oveq2d |
|
83 |
80 82
|
eqeq12d |
|
84 |
83
|
ralbidv |
|
85 |
84
|
2ralbidv |
|
86 |
85
|
elrab |
|
87 |
78 86
|
bitrdi |
|