| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natfval.1 |  | 
						
							| 2 |  | natfval.b |  | 
						
							| 3 |  | natfval.h |  | 
						
							| 4 |  | natfval.j |  | 
						
							| 5 |  | natfval.o |  | 
						
							| 6 |  | isnat.f |  | 
						
							| 7 |  | isnat.g |  | 
						
							| 8 | 1 2 3 4 5 | natfval |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | fvexd |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 |  | relfunc |  | 
						
							| 14 |  | brrelex12 |  | 
						
							| 15 | 13 6 14 | sylancr |  | 
						
							| 16 |  | op1stg |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 12 18 | eqtrd |  | 
						
							| 20 |  | fvexd |  | 
						
							| 21 |  | simplrr |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 |  | brrelex12 |  | 
						
							| 24 | 13 7 23 | sylancr |  | 
						
							| 25 |  | op1stg |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 26 | ad2antrr |  | 
						
							| 28 | 22 27 | eqtrd |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 | 29 | fveq1d |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 31 | fveq1d |  | 
						
							| 33 | 30 32 | oveq12d |  | 
						
							| 34 | 33 | ixpeq2dv |  | 
						
							| 35 | 29 | fveq1d |  | 
						
							| 36 | 30 35 | opeq12d |  | 
						
							| 37 | 31 | fveq1d |  | 
						
							| 38 | 36 37 | oveq12d |  | 
						
							| 39 |  | eqidd |  | 
						
							| 40 | 11 | ad2antrr |  | 
						
							| 41 | 40 | fveq2d |  | 
						
							| 42 |  | op2ndg |  | 
						
							| 43 | 15 42 | syl |  | 
						
							| 44 | 43 | ad3antrrr |  | 
						
							| 45 | 41 44 | eqtrd |  | 
						
							| 46 | 45 | oveqd |  | 
						
							| 47 | 46 | fveq1d |  | 
						
							| 48 | 38 39 47 | oveq123d |  | 
						
							| 49 | 30 32 | opeq12d |  | 
						
							| 50 | 49 37 | oveq12d |  | 
						
							| 51 | 21 | adantr |  | 
						
							| 52 | 51 | fveq2d |  | 
						
							| 53 |  | op2ndg |  | 
						
							| 54 | 24 53 | syl |  | 
						
							| 55 | 54 | ad3antrrr |  | 
						
							| 56 | 52 55 | eqtrd |  | 
						
							| 57 | 56 | oveqd |  | 
						
							| 58 | 57 | fveq1d |  | 
						
							| 59 |  | eqidd |  | 
						
							| 60 | 50 58 59 | oveq123d |  | 
						
							| 61 | 48 60 | eqeq12d |  | 
						
							| 62 | 61 | ralbidv |  | 
						
							| 63 | 62 | 2ralbidv |  | 
						
							| 64 | 34 63 | rabeqbidv |  | 
						
							| 65 | 20 28 64 | csbied2 |  | 
						
							| 66 | 10 19 65 | csbied2 |  | 
						
							| 67 |  | df-br |  | 
						
							| 68 | 6 67 | sylib |  | 
						
							| 69 |  | df-br |  | 
						
							| 70 | 7 69 | sylib |  | 
						
							| 71 |  | ovex |  | 
						
							| 72 | 71 | rgenw |  | 
						
							| 73 |  | ixpexg |  | 
						
							| 74 | 72 73 | ax-mp |  | 
						
							| 75 | 74 | rabex |  | 
						
							| 76 | 75 | a1i |  | 
						
							| 77 | 9 66 68 70 76 | ovmpod |  | 
						
							| 78 | 77 | eleq2d |  | 
						
							| 79 |  | fveq1 |  | 
						
							| 80 | 79 | oveq1d |  | 
						
							| 81 |  | fveq1 |  | 
						
							| 82 | 81 | oveq2d |  | 
						
							| 83 | 80 82 | eqeq12d |  | 
						
							| 84 | 83 | ralbidv |  | 
						
							| 85 | 84 | 2ralbidv |  | 
						
							| 86 | 85 | elrab |  | 
						
							| 87 | 78 86 | bitrdi |  |