Metamath Proof Explorer


Theorem isnat2

Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natfval.1 N = C Nat D
natfval.b B = Base C
natfval.h H = Hom C
natfval.j J = Hom D
natfval.o · ˙ = comp D
isnat2.f φ F C Func D
isnat2.g φ G C Func D
Assertion isnat2 φ A F N G A x B 1 st F x J 1 st G x x B y B h x H y A y 1 st F x 1 st F y · ˙ 1 st G y x 2 nd F y h = x 2 nd G y h 1 st F x 1 st G x · ˙ 1 st G y A x

Proof

Step Hyp Ref Expression
1 natfval.1 N = C Nat D
2 natfval.b B = Base C
3 natfval.h H = Hom C
4 natfval.j J = Hom D
5 natfval.o · ˙ = comp D
6 isnat2.f φ F C Func D
7 isnat2.g φ G C Func D
8 relfunc Rel C Func D
9 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
10 8 6 9 sylancr φ F = 1 st F 2 nd F
11 1st2nd Rel C Func D G C Func D G = 1 st G 2 nd G
12 8 7 11 sylancr φ G = 1 st G 2 nd G
13 10 12 oveq12d φ F N G = 1 st F 2 nd F N 1 st G 2 nd G
14 13 eleq2d φ A F N G A 1 st F 2 nd F N 1 st G 2 nd G
15 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
16 8 6 15 sylancr φ 1 st F C Func D 2 nd F
17 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
18 8 7 17 sylancr φ 1 st G C Func D 2 nd G
19 1 2 3 4 5 16 18 isnat φ A 1 st F 2 nd F N 1 st G 2 nd G A x B 1 st F x J 1 st G x x B y B h x H y A y 1 st F x 1 st F y · ˙ 1 st G y x 2 nd F y h = x 2 nd G y h 1 st F x 1 st G x · ˙ 1 st G y A x
20 14 19 bitrd φ A F N G A x B 1 st F x J 1 st G x x B y B h x H y A y 1 st F x 1 st F y · ˙ 1 st G y x 2 nd F y h = x 2 nd G y h 1 st F x 1 st G x · ˙ 1 st G y A x