Metamath Proof Explorer


Theorem isnghm

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion isnghm F S NGHom T S NrmGrp T NrmGrp F S GrpHom T N F

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 1 nghmfval S NGHom T = N -1
3 2 eleq2i F S NGHom T F N -1
4 n0i F N -1 ¬ N -1 =
5 nmoffn normOp Fn NrmGrp × NrmGrp
6 5 fndmi dom normOp = NrmGrp × NrmGrp
7 6 ndmov ¬ S NrmGrp T NrmGrp S normOp T =
8 1 7 syl5eq ¬ S NrmGrp T NrmGrp N =
9 8 cnveqd ¬ S NrmGrp T NrmGrp N -1 = -1
10 cnv0 -1 =
11 9 10 eqtrdi ¬ S NrmGrp T NrmGrp N -1 =
12 11 imaeq1d ¬ S NrmGrp T NrmGrp N -1 =
13 0ima =
14 12 13 eqtrdi ¬ S NrmGrp T NrmGrp N -1 =
15 4 14 nsyl2 F N -1 S NrmGrp T NrmGrp
16 1 nmof S NrmGrp T NrmGrp N : S GrpHom T *
17 ffn N : S GrpHom T * N Fn S GrpHom T
18 elpreima N Fn S GrpHom T F N -1 F S GrpHom T N F
19 16 17 18 3syl S NrmGrp T NrmGrp F N -1 F S GrpHom T N F
20 15 19 biadanii F N -1 S NrmGrp T NrmGrp F S GrpHom T N F
21 3 20 bitri F S NGHom T S NrmGrp T NrmGrp F S GrpHom T N F