Metamath Proof Explorer


Theorem isnghm3

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion isnghm3 S NrmGrp T NrmGrp F S GrpHom T F S NGHom T N F < +∞

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 1 isnghm2 S NrmGrp T NrmGrp F S GrpHom T F S NGHom T N F
3 1 nmocl S NrmGrp T NrmGrp F S GrpHom T N F *
4 1 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F
5 ge0gtmnf N F * 0 N F −∞ < N F
6 3 4 5 syl2anc S NrmGrp T NrmGrp F S GrpHom T −∞ < N F
7 xrrebnd N F * N F −∞ < N F N F < +∞
8 7 baibd N F * −∞ < N F N F N F < +∞
9 3 6 8 syl2anc S NrmGrp T NrmGrp F S GrpHom T N F N F < +∞
10 2 9 bitrd S NrmGrp T NrmGrp F S GrpHom T F S NGHom T N F < +∞