Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
isngp
Next ⟩
isngp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isngp
Description:
The property of being a normed group.
(Contributed by
Mario Carneiro
, 2-Oct-2015)
Ref
Expression
Hypotheses
isngp.n
⊢
N
=
norm
⁡
G
isngp.z
⊢
-
˙
=
-
G
isngp.d
⊢
D
=
dist
⁡
G
Assertion
isngp
⊢
G
∈
NrmGrp
↔
G
∈
Grp
∧
G
∈
MetSp
∧
N
∘
-
˙
⊆
D
Proof
Step
Hyp
Ref
Expression
1
isngp.n
⊢
N
=
norm
⁡
G
2
isngp.z
⊢
-
˙
=
-
G
3
isngp.d
⊢
D
=
dist
⁡
G
4
elin
⊢
G
∈
Grp
∩
MetSp
↔
G
∈
Grp
∧
G
∈
MetSp
5
4
anbi1i
⊢
G
∈
Grp
∩
MetSp
∧
N
∘
-
˙
⊆
D
↔
G
∈
Grp
∧
G
∈
MetSp
∧
N
∘
-
˙
⊆
D
6
fveq2
⊢
g
=
G
→
norm
⁡
g
=
norm
⁡
G
7
6
1
eqtr4di
⊢
g
=
G
→
norm
⁡
g
=
N
8
fveq2
⊢
g
=
G
→
-
g
=
-
G
9
8
2
eqtr4di
⊢
g
=
G
→
-
g
=
-
˙
10
7
9
coeq12d
⊢
g
=
G
→
norm
⁡
g
∘
-
g
=
N
∘
-
˙
11
fveq2
⊢
g
=
G
→
dist
⁡
g
=
dist
⁡
G
12
11
3
eqtr4di
⊢
g
=
G
→
dist
⁡
g
=
D
13
10
12
sseq12d
⊢
g
=
G
→
norm
⁡
g
∘
-
g
⊆
dist
⁡
g
↔
N
∘
-
˙
⊆
D
14
df-ngp
⊢
NrmGrp
=
g
∈
Grp
∩
MetSp
|
norm
⁡
g
∘
-
g
⊆
dist
⁡
g
15
13
14
elrab2
⊢
G
∈
NrmGrp
↔
G
∈
Grp
∩
MetSp
∧
N
∘
-
˙
⊆
D
16
df-3an
⊢
G
∈
Grp
∧
G
∈
MetSp
∧
N
∘
-
˙
⊆
D
↔
G
∈
Grp
∧
G
∈
MetSp
∧
N
∘
-
˙
⊆
D
17
5
15
16
3bitr4i
⊢
G
∈
NrmGrp
↔
G
∈
Grp
∧
G
∈
MetSp
∧
N
∘
-
˙
⊆
D