Metamath Proof Explorer


Theorem isngp2

Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses isngp.n N = norm G
isngp.z - ˙ = - G
isngp.d D = dist G
isngp2.x X = Base G
isngp2.e E = D X × X
Assertion isngp2 G NrmGrp G Grp G MetSp N - ˙ = E

Proof

Step Hyp Ref Expression
1 isngp.n N = norm G
2 isngp.z - ˙ = - G
3 isngp.d D = dist G
4 isngp2.x X = Base G
5 isngp2.e E = D X × X
6 1 2 3 isngp G NrmGrp G Grp G MetSp N - ˙ D
7 resss D X × X D
8 5 7 eqsstri E D
9 sseq1 N - ˙ = E N - ˙ D E D
10 8 9 mpbiri N - ˙ = E N - ˙ D
11 3 reseq1i D X × X = dist G X × X
12 5 11 eqtri E = dist G X × X
13 4 12 msmet G MetSp E Met X
14 1 4 3 5 nmf2 G Grp E Met X N : X
15 13 14 sylan2 G Grp G MetSp N : X
16 4 2 grpsubf G Grp - ˙ : X × X X
17 16 ad2antrr G Grp G MetSp N - ˙ D - ˙ : X × X X
18 fco N : X - ˙ : X × X X N - ˙ : X × X
19 15 17 18 syl2an2r G Grp G MetSp N - ˙ D N - ˙ : X × X
20 19 fdmd G Grp G MetSp N - ˙ D dom N - ˙ = X × X
21 20 reseq2d G Grp G MetSp N - ˙ D E dom N - ˙ = E X × X
22 4 12 msf G MetSp E : X × X
23 22 ad2antlr G Grp G MetSp N - ˙ D E : X × X
24 23 ffund G Grp G MetSp N - ˙ D Fun E
25 simpr G Grp G MetSp N - ˙ D N - ˙ D
26 ssv V
27 fss N - ˙ : X × X V N - ˙ : X × X V
28 19 26 27 sylancl G Grp G MetSp N - ˙ D N - ˙ : X × X V
29 fssxp N - ˙ : X × X V N - ˙ X × X × V
30 28 29 syl G Grp G MetSp N - ˙ D N - ˙ X × X × V
31 25 30 ssind G Grp G MetSp N - ˙ D N - ˙ D X × X × V
32 df-res D X × X = D X × X × V
33 5 32 eqtri E = D X × X × V
34 31 33 sseqtrrdi G Grp G MetSp N - ˙ D N - ˙ E
35 funssres Fun E N - ˙ E E dom N - ˙ = N - ˙
36 24 34 35 syl2anc G Grp G MetSp N - ˙ D E dom N - ˙ = N - ˙
37 ffn E : X × X E Fn X × X
38 fnresdm E Fn X × X E X × X = E
39 23 37 38 3syl G Grp G MetSp N - ˙ D E X × X = E
40 21 36 39 3eqtr3d G Grp G MetSp N - ˙ D N - ˙ = E
41 40 ex G Grp G MetSp N - ˙ D N - ˙ = E
42 10 41 impbid2 G Grp G MetSp N - ˙ = E N - ˙ D
43 42 pm5.32i G Grp G MetSp N - ˙ = E G Grp G MetSp N - ˙ D
44 df-3an G Grp G MetSp N - ˙ = E G Grp G MetSp N - ˙ = E
45 df-3an G Grp G MetSp N - ˙ D G Grp G MetSp N - ˙ D
46 43 44 45 3bitr4i G Grp G MetSp N - ˙ = E G Grp G MetSp N - ˙ D
47 6 46 bitr4i G NrmGrp G Grp G MetSp N - ˙ = E