Metamath Proof Explorer


Theorem isnlly

Description: The property of being an n-locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion isnlly J N-Locally A J Top x J y x u nei J y 𝒫 x J 𝑡 u A

Proof

Step Hyp Ref Expression
1 fveq2 j = J nei j = nei J
2 1 fveq1d j = J nei j y = nei J y
3 2 ineq1d j = J nei j y 𝒫 x = nei J y 𝒫 x
4 oveq1 j = J j 𝑡 u = J 𝑡 u
5 4 eleq1d j = J j 𝑡 u A J 𝑡 u A
6 3 5 rexeqbidv j = J u nei j y 𝒫 x j 𝑡 u A u nei J y 𝒫 x J 𝑡 u A
7 6 ralbidv j = J y x u nei j y 𝒫 x j 𝑡 u A y x u nei J y 𝒫 x J 𝑡 u A
8 7 raleqbi1dv j = J x j y x u nei j y 𝒫 x j 𝑡 u A x J y x u nei J y 𝒫 x J 𝑡 u A
9 df-nlly N-Locally A = j Top | x j y x u nei j y 𝒫 x j 𝑡 u A
10 8 9 elrab2 J N-Locally A J Top x J y x u nei J y 𝒫 x J 𝑡 u A