Metamath Proof Explorer


Theorem isnmhm

Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion isnmhm F S NMHom T S NrmMod T NrmMod F S LMHom T F S NGHom T

Proof

Step Hyp Ref Expression
1 df-nmhm NMHom = s NrmMod , t NrmMod s LMHom t s NGHom t
2 1 elmpocl F S NMHom T S NrmMod T NrmMod
3 oveq12 s = S t = T s LMHom t = S LMHom T
4 oveq12 s = S t = T s NGHom t = S NGHom T
5 3 4 ineq12d s = S t = T s LMHom t s NGHom t = S LMHom T S NGHom T
6 ovex S LMHom T V
7 6 inex1 S LMHom T S NGHom T V
8 5 1 7 ovmpoa S NrmMod T NrmMod S NMHom T = S LMHom T S NGHom T
9 8 eleq2d S NrmMod T NrmMod F S NMHom T F S LMHom T S NGHom T
10 elin F S LMHom T S NGHom T F S LMHom T F S NGHom T
11 9 10 bitrdi S NrmMod T NrmMod F S NMHom T F S LMHom T F S NGHom T
12 2 11 biadanii F S NMHom T S NrmMod T NrmMod F S LMHom T F S NGHom T