Metamath Proof Explorer


Theorem isnmhm2

Description: A normed module homomorphism is a left module homomorphism with bounded norm (a bounded linear operator). (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis isnmhm2.1 N = S normOp T
Assertion isnmhm2 S NrmMod T NrmMod F S LMHom T F S NMHom T N F

Proof

Step Hyp Ref Expression
1 isnmhm2.1 N = S normOp T
2 isnmhm F S NMHom T S NrmMod T NrmMod F S LMHom T F S NGHom T
3 2 baib S NrmMod T NrmMod F S NMHom T F S LMHom T F S NGHom T
4 3 baibd S NrmMod T NrmMod F S LMHom T F S NMHom T F S NGHom T
5 lmghm F S LMHom T F S GrpHom T
6 nlmngp S NrmMod S NrmGrp
7 nlmngp T NrmMod T NrmGrp
8 1 isnghm F S NGHom T S NrmGrp T NrmGrp F S GrpHom T N F
9 8 baib S NrmGrp T NrmGrp F S NGHom T F S GrpHom T N F
10 6 7 9 syl2an S NrmMod T NrmMod F S NGHom T F S GrpHom T N F
11 10 baibd S NrmMod T NrmMod F S GrpHom T F S NGHom T N F
12 5 11 sylan2 S NrmMod T NrmMod F S LMHom T F S NGHom T N F
13 4 12 bitrd S NrmMod T NrmMod F S LMHom T F S NMHom T N F
14 13 3impa S NrmMod T NrmMod F S LMHom T F S NMHom T N F