Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnrm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | 1 | ineq1d | |
3 | fveq2 | |
|
4 | 3 | fveq1d | |
5 | 4 | sseq1d | |
6 | 5 | anbi2d | |
7 | 6 | rexeqbi1dv | |
8 | 2 7 | raleqbidv | |
9 | 8 | raleqbi1dv | |
10 | df-nrm | |
|
11 | 9 10 | elrab2 | |