Metamath Proof Explorer


Theorem isnrm

Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion isnrm J Nrm J Top x J y Clsd J 𝒫 x z J y z cls J z x

Proof

Step Hyp Ref Expression
1 fveq2 j = J Clsd j = Clsd J
2 1 ineq1d j = J Clsd j 𝒫 x = Clsd J 𝒫 x
3 fveq2 j = J cls j = cls J
4 3 fveq1d j = J cls j z = cls J z
5 4 sseq1d j = J cls j z x cls J z x
6 5 anbi2d j = J y z cls j z x y z cls J z x
7 6 rexeqbi1dv j = J z j y z cls j z x z J y z cls J z x
8 2 7 raleqbidv j = J y Clsd j 𝒫 x z j y z cls j z x y Clsd J 𝒫 x z J y z cls J z x
9 8 raleqbi1dv j = J x j y Clsd j 𝒫 x z j y z cls j z x x J y Clsd J 𝒫 x z J y z cls J z x
10 df-nrm Nrm = j Top | x j y Clsd j 𝒫 x z j y z cls j z x
11 9 10 elrab2 J Nrm J Top x J y Clsd J 𝒫 x z J y z cls J z x