Metamath Proof Explorer


Theorem isnrm

Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion isnrm JNrmJTopxJyClsdJ𝒫xzJyzclsJzx

Proof

Step Hyp Ref Expression
1 fveq2 j=JClsdj=ClsdJ
2 1 ineq1d j=JClsdj𝒫x=ClsdJ𝒫x
3 fveq2 j=Jclsj=clsJ
4 3 fveq1d j=Jclsjz=clsJz
5 4 sseq1d j=JclsjzxclsJzx
6 5 anbi2d j=JyzclsjzxyzclsJzx
7 6 rexeqbi1dv j=JzjyzclsjzxzJyzclsJzx
8 2 7 raleqbidv j=JyClsdj𝒫xzjyzclsjzxyClsdJ𝒫xzJyzclsJzx
9 8 raleqbi1dv j=JxjyClsdj𝒫xzjyzclsjzxxJyClsdJ𝒫xzJyzclsJzx
10 df-nrm Nrm=jTop|xjyClsdj𝒫xzjyzclsjzx
11 9 10 elrab2 JNrmJTopxJyClsdJ𝒫xzJyzclsJzx