Step |
Hyp |
Ref |
Expression |
1 |
|
nrmtop |
|
2 |
|
nrmsep |
|
3 |
2
|
3exp2 |
|
4 |
3
|
impd |
|
5 |
4
|
ralrimivv |
|
6 |
1 5
|
jca |
|
7 |
|
simpl |
|
8 |
|
simpr1 |
|
9 |
|
simpr2 |
|
10 |
|
sslin |
|
11 |
9 10
|
syl |
|
12 |
|
eqid |
|
13 |
12
|
opncld |
|
14 |
13
|
ad4ant13 |
|
15 |
|
simpr3 |
|
16 |
|
simpllr |
|
17 |
|
elssuni |
|
18 |
|
reldisj |
|
19 |
16 17 18
|
3syl |
|
20 |
15 19
|
mpbid |
|
21 |
12
|
clsss2 |
|
22 |
|
ssdifin0 |
|
23 |
21 22
|
syl |
|
24 |
14 20 23
|
syl2anc |
|
25 |
|
sseq0 |
|
26 |
11 24 25
|
syl2anc |
|
27 |
8 26
|
jca |
|
28 |
27
|
rexlimdva2 |
|
29 |
28
|
reximdva |
|
30 |
29
|
imim2d |
|
31 |
30
|
ralimdv |
|
32 |
31
|
ralimdv |
|
33 |
32
|
imp |
|
34 |
|
isnrm2 |
|
35 |
7 33 34
|
sylanbrc |
|
36 |
6 35
|
impbii |
|